- •Классификация аминокислот.
- •Окисление жирных кислот с четным числом углеродных атомов
- •Физико-химические свойства аминокислот.
- •Пути превращения углеводов. Реакции гликолиза.
- •Первичная структура белка. Характеристика пептидной связи.
- •Пентозофосфатный путь и его значение.
- •Вторичная структура белка. Альфа- спираль и бета – складчатый слой.
- •Мобилизация гликогена при мышечной работе.
- •Третичная структура белка и силы ее стабилизирующие.
- •Работа пируватдегидрогеназного комплекса.
- •Четвертичная структура белка. Понятия о денатурации и деструкции.
- •Работа цикла трикарбоновых кислот.
- •Моносахариды. Структура и функция.
- •Синтазная система синтеза жирных кислот.
- •Кооперативный эффект связывания кислорода гемоглобином.
- •Окисление жирных кислот с нечетным числом углеродных атомов.
- •Реакции глюконеогенеза.
- •Отличия ферментов от неорганических катализаторов.
- •Классификация ферментов с примерами реакций на каждый класс.
- •Биохимия мышечного сокращения. Характеристика белков мышц.
- •Влияние температуры, pH и концентрации фермента на скорость ферментативной реакции.
- •Реакции трансаминирования, их биологическая роль.
- •Пути превращения аминокислот в организме человека. Глюкогенные и кетогенные аминокислоты.
- •Влияние концентрации субстрата на скорость ферментативной реакции. Уравнение Михаэлиса-Ментен.
- •Ингибирование ферментов. Конкурентное ингибирование. Использование конкурентного ингибирования для лечения заболеваний.
- •Синтез кетоновых тел, их роль для организма человека.
- •Ингибирование ферментов. Неконкурентное ингибирование.
- •Цикл мочевины.
- •Аллостерические ферменты.
- •Глюкозо-аланиновый путь, его важность для спортсмена.
- •Активный центр фермента и его свойства.
- •Биохимия мышц. Источники энергии для мышечного сокращения.
- •1 Кофакторы и коферменты. Классификация.
- •Гормоны гипоталамуса и гипофиза.
- •Способы определения активности фермента. Единицы измерения. Понятие об удельной и молярной активности.
- •Гормоны надпочечников (коркового и мозгового слоя)
- •Изоферменты.
- •Биосинтез белка. Стадии активации и инициации.
Окисление жирных кислот с нечетным числом углеродных атомов.
Как отмечается, основная масса природных липидов содержит жирные кислоты с четным числом углеродных атомов. Однако в липидах многих растений и некоторых морских организмов присутствуют жирные кислоты с нечетным числом атомов углерода. Кроме того, у жвачных животных при переваривании углеводов в рубце образуется большое количество про-пионовой кислоты, которая содержит три углеродных атома. Пропионат всасывается в кровь и окисляется в печени и других тканях. Установлено, что жирные кислоты с нечетным числом углеродных атомов окисляются таким же образом, как и жирные кислоты с четным числом углеродных атомов, с той лишь разницей, что на последнем этапе расщепления (β-окисления) образуется одна молекула пропионил-КоА и одна молекула ацетил-КоА, а не 2 молекулы ацетил-КоА.
Реакции глюконеогенеза.
Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот. Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них (глюкогенных) полностью включаются в молекулу глюкозы, некоторых (смешанных) частично.
Кроме получения глюкозы, глюконеогенез обеспечивает и уборку лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.
Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка обходит с помощью дополнительных реакций.
Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути, т.е. он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.
Отличия ферментов от неорганических катализаторов.
ОТЛИЧИЯ
1.Скорость ферментативной реакции намного выше.
2. Высокая специфичность.
3.Мягкие условия работы (внутриклеточные).
4.Возможность регулирования скорости реакции.
5.Скорость ферментативной реакции пропорциональна количеству фермента.
6. Ферменты по своей химической природе белки, катализаторы - неорганика.
7. Ферменты работают только в опрделенном диапазоне температур (обычно в районе 37 град. С плюс/минус 2-3 град.С)., а скорость неорганического катализа возрастает в 2-4 раза при повышении температуры на каждые 10 град. С по линейной зависимости (правило Вант-Гоффа).
8. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.
9. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.
10. Ферментативные реакции протекают только в физиологических условиях, т.к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).