Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Девясилов В.А. Теория горения и взрыва.pdf
Скачиваний:
1672
Добавлен:
14.03.2015
Размер:
6.58 Mб
Скачать

2.3. Характеристи ка ударн ых волн

187

2.3. Характеристика ударных волн

Ударная волна представляет собой область резкого и сильного сжатия среды, распространяющейся во все стороны от центра взрыва

со сверхзвуковой скоростью.

Ударные волны возникают при взрывах практически в любых средах и передают действие взрыва на значительное расстояние.

В зависимости от среды, в которой распространяется ударная волна, различают волны: воздушные (распространяются в воздушной среде); ударные (распространяются в водной среде); сейсмовзрывные

(распространяются в грунте).

2.3. 1. Основные свойства и механизм образования

ударных волн

Процесс образования ударной волны рассмотрим на примере взрыва заряда взрывчатого вещества ( ВВ).

При взрыве заряда взрывчатого вещества газообразные продукты взрыва, находящиеся под давлением порядка десятков и даже сотен тысяч атмосфер, расширяются, сжимая окружающую среду (воздух, воду, грунт и т. п.). Развитие процесса взрыва в среде схематически показано на рис. 2.2. После прохождения детонационной волны М1 по заряду ВВ (пунктиром обозначена продетонировавшая часть заря­ да) начинается расширение продуктов детонации.

Зона расширяюшихся продуктов в данный момент времени огра­ ничена кривой СМ1 С 1 , фронт ударной волны, возбужденной взры­ вом, - ВА и А1 В 1 • Скорость детонации и связана со скоростями удар­

ной волны иl и расширения продуктов и2 со­

в

отношением и > и1 > и2 , причем значения

U1 и и2 падают по мере удаления от фронта

с

детонации М1 •

 

Волна сжатия, вызывающая заметный разогрев среды, может устойчиво существо­

вать только в форме ударной волны со скач­

кообразным изменением давления во фрон­ те; фронт с плавным нарастанием давления

неустойчив и быстро превращается в скачко­ образный с резким изменением давления.

Вслед за ударной волной идет волна разреже-

Рисnpouecca. 2.2. Схе ма развития взры ва в среде

188 Раздел 2. Взры в

ния, которая, двигаясь по сжатому и разогретому воздуху, будет наго­ нять фронт ударной волны.

Схема изменения давления во времени при прохождении удар­ ной волны показана на рис. 2.3.

- t

1 0 l 1 1 е 1 2

Рис. 2.3. Схема изменения давления во времени при прохождении ударной волны:

1 - фаза сжатия ; 2 - фаза разрежения (nри взрывах в плотных средах - фаза рас­

тяжения или разгрузки)

В момент прихода волны в определенную точку пространства дав­ ление в прилегающей к ней области скачком увеличивается от р0 (в невозмущенной среде) до р1 (во фронте ударной волны). За фрон­ том давление быстро падает и через время /еж (время действия фазы сжатия), после прихода волны в точку, оказывается меньше р0 - фаза сжатия сменяется фазой разрежения.

Время, в течение которого давление в ударной волне сохраняется выше атмосферного, называется фазой сжатия, а время, в течение ко­ торого давление остается ниже атмосферного, - фазой разрежения.

В момент прихода ударной волны в некоторую точку среда, при­ легающая к этой точке, начинает двигаться со скоростью и в направ­ лении распространения этой волны. Характер изменения и(t) схож с характером изменения p(t). В фазе сжатия среда движется в сторону перемещения ударной волны, в фазе разрежения - в обратном на­ правлении, но с несколько меньшей скоростью.

Фронт ударной волны распространяется со сверхзвуковой скоро­

стью ( V> с0), а ее хвостовая часть, где р < -р0, движется со скоростью, близкой к скорости звука с0 в невозмушенной среде, поэтому по мере движения ударная волна растягивается во времени. Давление во фронте ударной волны р 1 , скорость перемешения фронта V и скорость потока среды и не являются постоянными. При удалении удар­ ной волны от очага взрыва она уменьшается, и на больших расстоя-

2.3. Характеристи ка ударн ых вол н

189

ниях V приближается к с0, а и - к нулю, т. е. ударная волна вырожда­

ется в акустическую (упругую) волну. Следовательно, ударная волна

имеет как область сжатия , так и разрежения. На практике действие

ударной волны определяется фазой сжатия. Действие фазы разреже­

ния обычно несущественно, поэтому не учитывается, за исключени­

ем некоторых частных эффектов.

2.3.2. Параметры ударной волны

Основными параметрами ударной волны являются:

избыточное давление во фронте ударной волны;

скоростной напор ударной волны, действующий на поверхность объекта;

время действия ударной волны;

импульс волны и др.

Избыточное давление во фронте ударной волны характеризуется разностью давления во фронте волны и атмосферного давления.

др = Р1 - Ро,

где р1 - давление во фронте ударной волны;

р0 - давление в невозмущенной среде (атмосферное давление).

Ударная волна характеризуется скоростью нарастания давления до его максимального значения.

Под максимальным давлением взрыва понимается наибольшее

давление, которое возникает при дефлаграционном сгорании наибо­ лее взрывоопасной газа- , пара-, пылевоздушной смеси в замкнутом сосуде при начал ьном давлении 1 0 1 ,3 кПа. Максимальное давление при взрыве аэросмеси можно рассчитать по формуле:

(2. 1 )

где р0 - начальное давление, при котором находится аэровзвесь, кПа;

Т0 - начальная температура исходной смеси, К;

Tr - адиабатическая температура горения стехиометрической

смеси с воздухом при постоянном объеме, К; пк - число молей газообразных продуктов сгорания; f/11 - число молей исходной газовой смеси.

Ударная волна характеризуется пиком. Пик - это участок ударной

волны от момента ударного сжатия до завершения химической реакции,

где формируется самое высокое давление.

190

Раздел 2. Взры в

Параметром ударной волны является импульс волны. Величина имnульса волны будет различной в зависимости от среды, в которой nротекает взрыв. В общем виде имnульс волны оnисывается законом

подобия:

(2.2)

где GR- масса взрывчатого (горючего) вещества; - расстояние действия ударной волны;

- угол отражения волны.

Расnространение ударной волны зависит от множества факторов, оnределяющих ее действие и силу.

Для оценки действия ударной волны необходимо знать характер нагрузки и nараметры системы, на которую эта нагрузка действует. Характер нагрузки обычно оnисывается функцией изменения давле­ ния ударной волны во времени p(t) в nределах от нуля до времени фазы сжатия tсж· Однако во многих частных случаях действие ударной волны с достаточной точностью оnределяется либо значением избы­

точного давления l:![J1 = р 1

- р0

на ее фронте, либо величиной удель­

ного имnульса фазы сжатия:

fсж

 

 

1 =

(2.3)

 

J l:!p(t)dt.

 

 

о

 

Характер воздействия ударной волны на заданную систему зави­ сит от соотношения между временем действия фазы сжатия tсж и вре-

менем релаксации системы 't, а для уnругих систем - nериодом коле­ баний Т.

Если fсж >> 't, то действие ударной волны оnределяется величи­ ной избыточного давления на ее фронте, так как в этом случае систе­ ма будет деформирована за такой nромежуток времени (nорядка

( 1/4- 1/З}t}, в течение которого давление во фронте не усnеет сущест­

венно уnасть. Если, наnротив, tсж << 't, то давление за фронтом волны

снижается за столь малый nромежуток времени, что система nракти­

чески не усnевает деформироваться и дальнейшие деформации ее оn­ ределяются nриобретенным ею количеством движения, а следова­ тельно, удельным имnульсом ударной волны.

Время фазы сжатия зависит от множества факторов: размеров и формы заряда ВВ, среды, в которой nротекает взрыв, nрироды взрыв-

2.3. Хара ктеристи ка ударн ых вол н

191

чатого вещества, энергии взрыва и др. Время действия фазы сжатия tсж nри использовании соответствующих форм законов подобия выразит­

ся формулами (2.4).

 

 

fсж = г0

 

 

 

 

rfсж = WF( }

(2.4)

 

 

{ }

 

 

 

ж = VEF3

( ) .

 

где г0

- радиус заряда;

 

 

G - масса заряда;

 

 

 

 

- расстояние действия ударной волны;

 

Е - энергия взрыва;

 

 

 

R

 

 

 

 

F1 , F2, F3 - функциональная зависимость.

Огромное значение для оценки параметров ударных волн и их действия имеет закон подобия при взрывах, позволяющий сравнивать характеристики ударных волн, возбужденных взрывами зарядов раз­ личной массы, состоящих из разных ВВ, а также взрывами, вызван­ ными горением взрывоопасных смесей.

Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны (или волны ударного сжатия). Например, если в замкнутом объеме с горючей га­ зовой смесью взорван точечный заряд взрывчатого вещества, либо произошло возгорание от источника зажигания, то по всей газовой смеси от точки расположения заряда распространится ударная волна, в которой происходит внезапное скачкообразное повышение пара­ метров состояния газовой смеси - давления, температуры, плотно­ сти. Повышение температуры газа при сжатии в ударной волне зна­ чительно больше, чем при аналогичном адиабатическом сжатии. По­ этому абсолютная температура газа, сжатого ударной волной,

прr.торциональна давлению ударной волны.

Следовательно, если ударная волна достаточно сильна, то темпе­

ратура газа под действием ударной волны может повыситься до темпе­ ратуры самовоспламенения. Ударная волна характеризуется скоростным напором. Скоростной

напор образуется в результате торможения о какую-либо преграду

движущихся масс воздуха в ударной волне. Скорость движения рас-

192

Раздел 2. Взры в

ширяющихся газов, образующих скоростной напор, зависит от степе­ ни сжатия газов и нагревания их ударной волной. Напор вызывает опрокидывание и отбрасывание различных объектов на значительные расстояния.

Ударная волна распространяется в пространстве со сверхзвуковой скоростью. Например, ударная волна при ядерном взрыве проходит первые 1 000 м за 2 с, 2000 м - за 5 с, 3000 м - за 8 с.

Сила ударной волны очень велика и приводит к значительным разрушениям. Если скорость повышения давления относительно не­ велика, то прежде всего будут разрушаться наименее прочные детали, например, окна и двери. В случае же однородной по прочности кон­ струкции здания подъем крыши и разрушение всех стен произойдут одновременно. Избыточное давление ударной волны приводит при взрыве к сильным повреждениям. В табл. 2.3 содержатся данные, ука­ зывающие на степень повреждений.

Таблица 2.3. Повреждения при взрыве от ударной волны

Дамениерв5,ударной Стеnень nовреЖдения

волне кПа

0,2

Разрушение стекол в окнах при больших площадях ос-

 

текпения

 

 

 

 

0,3-0,5

Громкий звук ( 1 43 дБ) ; поврежден ия стекол ; 5%-ное

 

разрушение остекления

 

 

 

 

2, 1

Повреждение обшивки домов; разрушение до 1 0 %

 

оконных стекол

 

 

 

 

2,8

Незначительные повреждения конструкций

 

 

 

 

4,0

90%-ное разрушение остекления, повреждение

 

оконных рам

 

 

 

 

5,0

Незначит льные повреждения конструкций домов

 

 

 

 

7,2

Частичное разрушение домов до состояния, при кото-

 

ром проживанис в них невозможно

8,5

Разрушение гофрированного асбеста. Гофрированные

 

стальные ил и алюминиевые паиели ослабля ются в креп-

 

лени и и подвергаются изгибу. Деревян ные паиели раз-

 

рушаются

 

 

 

 

9,2

Стал ьные конструкци и зданий искривля ются

 

 

 

1 4,2

Частичное разрушение стен и кровл и домов

ДавлениеPs•в ударной

волне Па

к

11 4,2-2 1 ,4

1 6,4

1 7,8

2 1 ,4

2 .3 . Характеристи ка ударн ых вол н

193

 

Окончание табл. 2.3

Степень повреждения

Разрушаются не укреnленные стены из бетона и шлаковых блоков

Н ижни й nредел серьезных nовреждений конструкций

50%-ное разрушение

Тяжелые машины ( весом 1 ,35 т) в nромышленных зданиях nодвергаются небольшим nовреждениям. Стальные конструкции изгибаются

2 1 -28,5

Разрушение бескаркасн ых сооружений, склеnанных из

 

 

стальных nанелей. Разрушение масляных хранилищ

 

 

Отрыв nокрытий легких nромышленных зданий

28,5

 

 

 

35,6

Растрескивание деревянных столбов (телеграфных и

 

 

пр.). Повреждаются высокие гидравлические nрессы

 

 

(весом 1 ,8 т)

 

 

 

35,6-49,9

Почти nолное разрушение домов

 

 

 

49,9

Перевертывание тяжелогруженых ж/д вагонов

 

 

 

49,9-57,0

Кирnичные стены толщи ной 200-300 мм, не укреnлен-

 

 

ньrе, теряют n рочность в результате сдви га или изгиба

 

 

 

64, 1

Тяжелые грузовые железнодорожные вагоны nолностью

 

 

разрушаются

 

 

 

70,0

Разрушение более 75 % внутренней кирnичной кладки

 

 

зданий

7 1 ,2

Возможно общее разрушение зданий. Тяжел ые (>3 т)

 

 

машины и станки nередви гаются и сильно nовреждают-

 

 

ся. Очен ь тяжелые (>5 т) машины и станки сохраня ются

2 1 37,0

Разрушение с образованием кратера

Ударная волна с Ps = 1 9 кПа вызывает значительные разрушения

городских построек, а при Ps = 98 кПа наступает полное разрушение

зданий и гибель живых организмов.

На степень разрушения влияют особенности конструкции соору­ жений, а также рельеф местности.

l ]

495 1