
- •ВВЕДЕНИЕ
- •1.2.1. Механизм образования монолитных соединений твердых тел
- •1.2.2. Сварка плавлением и давлением
- •1.2.3. Пайка и склеивание
- •1.3. Термодинамика и баланс энергии процесса сварки
- •1.3.1. Термодинамическое определение сварки
- •1.3.2. Типовой баланс энергии при сварке
- •1.3.3. КПД сварочных процессов
- •1.4. Классификация процессов сварки
- •1.4.1. Признаки классификации сварочных процессов
- •1.4.2. Термические процессы
- •1.4.3. Термомеханические процессы
- •1.5.2. Расчет энергоемкости процессов сварки
- •Контрольные вопросы и задания
- •2.1.2. Возбуждение дуги и ее зоны
- •2.2. Элементарные процессы в плазме дугового разряда
- •2.2.1. Основные параметры плазмы
- •2.2.3. Идеальная плазма. Плазменный параметр
- •2.2.4. Эффективное сечение взаимодействия
- •2.2.5. Эффект Рамзауэра
- •2.2.6. Упругие и неупругие соударения.
- •2.2.7. Потенциал ионизации
- •2.2.8. Термическая ионизация
- •2.2.9. Фотоионизация.
- •2.2.10. Деионизация.
- •2.3. Явления переноса в плазме
- •2.3.1. Электропроводность
- •2.3.2. Амбиполярная диффузия
- •2.3.3. Теплопроводность плазмы
- •2.4.2. Уравнение Саха
- •2.4.3. Эффективный потенциал ионизации
- •2.5. Баланс энергии и температура в столбе дуги
- •2.5.1. Баланс энергии в столбе дуги
- •2.5.2. Температура дуги
- •2.5.3. Влияние газовой среды
- •2.6. Приэлектродные области дугового разряда
- •2.6.1. Эмиссионные процессы на поверхности твердых тел
- •2.6.2. Катодная область
- •2.6.3. Анодная область
- •2.6.4. Измерения в приэлектродных областях.
- •2.6.5. Баланс энергии в приэлектродных областях
- •2.6.6. Потоки плазмы в дуге
- •2.7. Магнитогидродинамика сварочной дуги
- •2.7.1. Собственное магнитное поле дуги и сварочного контура
- •2.7.2. Магнитное поле сварочного контура. Магнитное дутье
- •2.7.3. Внешнее магнитное поле
- •2.7.4. Вращающаяся дуга
- •2.8. Перенос металла в сварочной дуге
- •2.8.1. Виды переноса металла
- •2.8.2. Импульсное управление переносом металла в дуге
- •2.9. Сварочные дуги переменного тока
- •2.9.1. Особенности дуги переменного тока
- •2.9.2. Вентильный эффект
- •2.10.1.Ручная дуговая сварка электродами с покрытиями
- •2.10.2. Сварка под флюсом
- •2.10.3. Металлические дуги в защитных газах и в вакууме
- •2.11. Сварочные дуги с неплавящимся электродом
- •2.11.1. Аргонодуговая сварка W-электродом
- •2.11.2. W-дуга в гелии
- •2.11.3. Баланс энергии W-дуги
- •2.11.4. Дуга с полым неплавящимся катодом в вакууме
- •2.12. Плазменные сварочные дуги
- •2.12.1. Виды и особенности плазменных дуг
- •2.12.2. Газовые среды
- •3.12.3. Применение плазменной дуги
- •Контрольные вопросы
- •3.1.1. Формирование электронного пучка
- •3.1.2. Основные физические характеристики электронного пучка
- •3.1.3. Взаимодействие электронного пучка с веществом
- •3.1.4. Применение электронно-лучевых процессов при сварке
- •3.2. Фотонно-лучевые источники
- •3.2.1. Полихроматический свет
- •3.2.2. Когерентное излучение и его основные свойства
- •3.2.3. Основные характеристики лазеров
- •3.3. Газовое пламя
- •3.4. Электрошлаковая сварка (ЭШС)
- •3.5. Термитная сварка
- •Контрольные вопросы.
- •Глава 4. ПРЕССОВЫЕ И МЕХАНИЧЕСКИЕ СВАРОЧНЫЕ ПРОЦЕССЫ
- •4.1. Прессовые сварочные процессы
- •4.1.1. Способы термопрессовой сварки
- •4.2. Механические процессы
- •4.2.1. Прессово-механический контакт и холодная сварка
- •4.2.2. Трущийся контакт и сварка трением
- •4.3.3. Ударный контакт и сварка взрывом
- •Контрольные вопросы.
- •ОГЛАВЛЕНИЕ

2.6.6. Потоки плазмы в дуге
Потоки плазмы в дуге увлекают за собой окружающий газ и поэтому всегда сопровождаются газовыми потоками.
При малых токах (меньше 30 А) это движение вызывается подъемными силами, возникающими из-за того, что плотность горячей плазмы меньше плотности окружающей атмосферы. Дуги, в которых характер движения газа определяется свободной конвекцией, относятся к слаботочным дугам. В этой связи интересно отметить, что само название «дуга» произошло от той формы, которую принимает газовый разряд низкой интенсивности между горизонтальными электродами под влиянием подъемных сил.
При увеличении тока возникает гидродинамическое течение со скоростями, значительно превышающими скорости, обусловленные естественной конвекцией. Течение газа сильноточных дуг направлено обычно от стержневого катода к плоскому аноду и называется катодной струёй. Газовый поток входит в зону W-дуги в районе катода и уходит в радиальном направлении вблизи анода (рис. 2.29).
Давление в дуге возникает под действием электромагнитных сил (сил Лоренца). Радиальное сжатие (пинч-эффект) обратно пропорционально сечению, по которому идет ток. Следовательно, при стержневом катоде и плоском аноде оно постепенно убывает от катода к аноду. Наибольшее давление на оси столба при токе I и его плотности j составляет
рmax = µ0I·j/4π , |
(2.84) |
а скорость катодной струи v2max =2I2/(Aρ), где А — коэффициент, зависящий от размерности; ρ — плотность плазмы.
Для W-дуг типична колоколообразная форма (рис. 2.30), расширяющаяся к аноду. Область перед катодом здесь можно представить электромагнитный насос, который забирает газ из среды и выбрасывает его к аноду.
Рис. 2.29. Схема течения газа в силь- |
Рис. 2.30. Форма |
столба W- дуги в |
ноточной дуге |
аргоне: (I = 150 |
А, lд = 6 мм) |
Скорость ионизованного газа в катодной струе W-дуги может иметь порядок 102 м/с, что соответствует от 0,1 до 0,2 М (М — число Маха). Поэтому гидродинамику этой струи можно исследовать методами теоретического течения несжимаемой жидкости. При сварке Ме-дугой возможны скорости плазменного потока до 103 м/с.
69