
книги / Теория пластичности
..pdf84.Термопрочность деталей машин / Биргер И.А., Шорр Б.Ф., Демьянушко И.В., Дульнев Р.А., Сизова Р.Н.; под ред. И.А. Биргера
иБ.Ф. Шорра. – М.: Машинострение, 1975. – 455 с.
85.Трусделл К. Первоначальный курс рациональной механики сплошных сред. – М.: Мир, 1975. – 592 с.
86.Трусов П.В., Дударь О.И., Келлер И.Э. Тензорные алгебра
ианализ / Перм. гос. техн. ун-т. – Пермь, 1998. – 131 с.
87.Трусов П.В., Келлер И.Э. Теория определяющих соотношений: курс лекций. Ч. I: Общая теория. – Пермь: Изд-во Перм. гос.
техн. ун-та, 2006. – 173 с.
88.Трусов П.В., Швейкин А.И.. Теория определяющих соотношений: учебное пособие. Ч.II: Теория пластичности. – Пермь: Изд-во Перм. гос. техн. ун-та, 2008. – 243 с.
89.Физическая мезомеханика и компьютерное конструирование материалов: в 2 т. / В.Е. Панин, В.Е. Егорушкин, П.В. Макаров [и др.]. – Новосибирск: Наука; Сибирская издат. фирма РАН, 1995. –
Т. 1. – 298 с.; Т. 2. – 320 с.
90.Хилл Р. Математическая теория пластичности. – М.: Гос-
техиздат, 1956. – 407 с.
91.Циглер Г. Экстремальные принципы термодинамики необратимых процессов и механика сплошной среды. – М.: Мир, 1966. –
136 с.
92.Черных К.Ф. Введение в анизотропную упругость. – М.: Наука; Гл. ред. физ.-мат. лит-ры, 1988. – 192 с.
93.Штрайтвольф Г. Теория групп в физике твердого тела.– М.:
Мир, 1971. – 262 c.
94.Abdel-Karim M. Modified kinematic hardening rules for simulations of ratcheting // Int. J. Plasticity. – 2008. doi: 10.1016/j.ijplas.2008.10.004. – 66 p.
95.Anand L., Kothari M. A computational procedure for rate– independent crystal plasticity // J. of the Mechanics and Physics of Solids. – 1996. – Vol. 44. – No. 4. – P. 525–558.
96.Armstrong, P.J., Frederick, C.O. A mathematical representation of the multiaxial Bauschinger effect: Report RD/B/N731, 1966, CEGB, Central Electricity Generating Board, Berkeley, UK.
401
97.Asaro R.J. Micromechanics of crystals and polycrystals // Advances in Applied Mechanics. – 1983. – Vol. 23. – Р. 1–115.
98.Asaro R.J., Needleman A. Texture development and strain
hardening in rate dependent polycrystals // Acta Metall. – 1985. – Vol. 33. – No. 6. – P. 923–953.
99.Ashby M.F. The deformation of plastically non-homogeneous materials // Phil. Mag. – 1970. – Vol. 21. – P. 399–424.
100.Balasubramanian S., Anand L. Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures // J. Mech. and Phys. Solids. – 2002. – Vol. 50. – P. 101–126.
101.Barlat F., Duarte J.M. Ferreira G. J.J., Lopes A.B., Rauch E.F.
Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample // Int. J. Plasticity. – 2003. – Vol. 19. – Р. 1215–1244.
102.Batra R.C., Zhu Z.G. Effect of loading direction and initial imperfections on the development of dynamic shear bands in a FCC single crystal // Acta Mechanica. – 1995. – Vol. 113. – No. 1–4. – P. 185–203.
103.Beyerlein I.J., Lebensohn R.A., Tome C.N. Modeling texture
and microstructural evolution in the equal channel angular extrusion process // Mater. Sci. and Eng. – 2003. – Vol. A345. – Р. 122–138.
104.Bilby B.A., Gardner L.R.T., Stroh A.N. Continuous distribu-
tions of dislocations and the theory of plasticity // In: Proc. 9th Int. Congr. Appl. Mech. Bruxelles, 1956. – Universiteґ de Bruxelles. – 1957. – Vol. 8. – Р. 35–44.
105.Bishop J.F., Hill R. A theory of the plastic distortion of a polycristalline aggregate under combined stresses // Phil. Mag. Ser. 7. – 1951. – Vol. 42. – No. 327. – P. 414–427.
106.Bishop J.F.W., Hill R. A theoretical derivation of the plastic proporties of a polycristalline face – centered metal // Phil. Mag. Ser. 7. – 1951. – Vol. 42. – No. 334. – P. 1298–1307.
107.Bittencourt E., Needleman A., Gurtin M.E., Van der Giessen
E. A comparison of nonlocal continuum and discrete dislocation plasticity predictions // J. Mech. Phys. Solids. – 2003. – Vol. 51. – Р. 281–310.
402
108.Bőhlke T., Risy G., Bertram A. A texture component model for
anisotropic polycrystal plasticity // Comput. Mater. Sci. – 2005. – Vol. 32. – Р. 284–293.
109.Busso E.P., Cailletaud G. On the selection of active slip systems in crystal plasticity // Int. J. of Plasticity. – 2005. – Vol. 21. – P. 2212–2231.
110.Cailletaud G., Diard O., Feyel F., Forest S. Computational crystal plasticity: from single crystal to homogenized polycrystal // Technische Mechanik. – 2003. – Band 23. – Heft 2–4. – P. 130–145.
111.Cermelli P., Gurtin M.E. On the characterization of geometri-
cally necessary dislocations in finite plasticity // J. Mech. Phys. Solids. – 2001. – Vol. 49 – Р. 1539–1568.
112.Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. Plasticity. – 2008. – Vol. 24. – Р. 1642–1693.
113.Chow C.L., Chen X.F. An anisotropic model of damage mechanics based on endochronic theory of plastisity // Int. J. Fract. – 1992. – Vol. 55. – P. 115–130.
114.Clayton J.D., McDowell D.L. A multiscale multiplicative de-
composition for elastoplasticity of polycrystals // Int. J. Plasticity. – 2003. – Vol. 19. – Р. 1401–1444.
115.Cuitino A.M., Ortiz M. Computational modeling of single crystals // Modelling and Simulation in Material Science and Engineering. – 1992. – Vol. 1. – P. 225–263.
116.Dafalias Y.F., Popov E.P. Rate-independent cyclic plasticity in a plastic internal variables formalism// Mechanics Research Communications. – 1976. – Vol. 3. – Issue 1. – P. 33–38.
117.Diard O., Leclercq S., Rousselier G., Cailletaud G. Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity. Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries // Int. J. of Plasticity. – 2005. – Vol. 21. – P. 691–722.
118.Evers L.P., Parks D.M., Brekelmans W.A.M., Geers M.G.D. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation // J. Mech. and Phys. Solids. – 2002. – Vol. 50. – P. 2403–2424.
403
119.Fleck N.A., Hutchinson J.W. Strain gradient plasticity // Adv. Appl. Mech. – 1997. – Vol. 33. – Р. 295–362.
120.Follansbee P.S., Kocks U.F. A constitutive description of copper based on the use of the mechanical threshold stress as an Internal State Variable // Acta Metall. – 1988. – Vol. 36. – P. 81–93.
121.Frederick, C.O., Armstrong, P.J. A mathematical representa-
tion of the multiaxial Bauschinger effect // Mater. High Temp. – 2007. – Vol. 24 (1). – Р. 1–26.
122.Gambin W. A model of rigid – ideally plastic crystal // J. Tech. Phys. – 1987. – Vol. 28. – No. 3. – P. 309–326.
123.Gerken, J. M., Dawson P.R. A crystal plasticity model that in-
corporates stresses and strains due to slip gradients // J. of the Mechanics and Physics of Solids. – 2008. – Vol. 56. – Р. 1651–1672.
124.Gurtin, M.E. On the plasticity of single crystals: free energy,
microscopic forces, plastic strain gradients // J. Mech. Phys. Solids. – 2000. – Vol. 48. – Р. 989–1036.
125.Gurtin, M.E. A gradient theory of single-crystal viscoplasticity
that accounts for geometrically necessary dislocations // J. Mech. Phys. Solids. – 2002. – Vol. 50. – Р. 5–32.
126.Gurtin, M.E. On a framework for small-deformation viscoplas-
ticity: free energy, microscopic forces, strain gradients // Int. J. Plasticity. – 2003. – Vol. 19 – Р. 47–90.
127.Gurtin, M.E. A gradient theory of small-deformation isotropic
plasticity that accounts for the Burgers vector and for dissipation due to plastic spin // J. Mech. Phys. Solids. – 2004. – Vol. 52 – Р. 2545–2568.
128.Gurtin, M.E. The Burgers vector and the flow of screw and
edge dislocations in finite-deformation single crystal plasticity // J. Mech. Phys. Solids. – 2006. – Vol. 54. – Р. 1882–1898.
129.Gurtin M.E., Anand L. A theory of strain-gradient plasticity for
isotropic, plastically irrotational materials. Part I: Small deformations // J. Mech. Phys. Solids. – 2005. – Vol. 53. – Р. 1624–1649.
130.Gurtin M.E., Anand, L. A theory of strain-gradient plasticity for
isotropic, plastically irrotational materials. Part II: Finite deformations // Int. J. Plasticity. – 2005. – Vol 21. – Р. 2297–2318.
404
131.Gurtin M.E., Anand L., Lele S.P. Gradient single-crystal plasticity with free energy dependent on dislocation densities // J. Mech. Phys. Solids – 2007. – doi: 10.1016/j.jmps.2007.02.006.
132.Gurtin M.E., Needleman A. Boundary conditions in smalldeformation, single-crystal plasticity that account for the Burgers vector // J. Mech. Phys. Solids. – 2005. – Vol. 53. – 1–31.
133.Habraken A.M. Modelling the plastic anisotropy of metals//Arch. Comput. Meth. Engng. – 2004. –11. – No. 1. – Р. 3-96.
134.Harder J. FEM-simulation of the hardening behavior of FCC single crystals // Acta Mechanica. – 2001. – Vol. 150 – Р. 197–217.
135.Harren S.V., Asaro R.J. Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model // J. Mech. Phys. Solids. – 1989. – Vol. 37. – No. 2. – P. 191–232.
136.Hill R. A theory of the yielding and plastic flow of anisotropic materials // Proc. Royal Soc. London. – 1948. – A193. – Р. 281–297.
137.Hill R. Continuum micro-mechanics of elastoplastic polycrystals // J. Mech. Phys. Solids. – 1965. – Vol. 13. – Р. 89–101.
138.Hill R. Theoretical plasticity of textured aggregates // Math. Proc. Cambridge Philosophical Soc. – 1979. – Vol. 85. – Р. 179–191.
139.Hill R. Constitutive dual potentials in classical plasticity // J. Mech. Phys. Solids – 1987. – Vol. 35. – Р. 23–33.
140.Hill R. Constitutive modelling of orthotropic plasticity in sheet metals // J. Mech. Phys. Solids – 1990. – Vol. 38 (3). – Р. 405–417.
141.Hill R. A user-friendly theory of orthotropic plasticity in sheet metals // Int. J. Mech. Sci. – 1993. – Vol. 35 (1). – Р. 19–25.
142.Horstemeyer M.F., Potirniche G.P., Marin E.B. Crystal plastic-
ity // In Handbook of Materials Modeling. S. Yip (ed.) – Springer: Netherlands. – 2005. – Р. 1133–1149.
143.Hosford W.F. A generalized isotropic yield criterion // J. Appl. Mech. Trans. ASME. – 1972. – Vol. 39. – Р. 607–609.
144.Hutchinson, J.W. Bounds and self-consistent estimates for
creep of polycrystalline materials// Proc.R. Soc. Lond. – 1976. – Vol. 348
(A). – Р. 101–127.
405
145.Kalidindi S.R., Bronkhorst C.A., Anand L. Crystallographic texture evolution in bulk deformation processing of FCC metals // J. Mech. Phys. Solids. – 1992. – Vol. 40. – No. 3. – P. 537–569.
146.Kim H.-K., Ohb S.-I. Finite element analysis of grain-by-grain
deformation by crystal plasticity with couple stress // Int. J. Plasticity. – 2003. – Vol. 19. – Р. 1245–1270.
147.Kocks U.F. The relation between polycrystal deformation and single crystal deformation // Metal. Trans. – 1970. – Vol. 1. – No. 5. – P. 1121–1143.
148.Kok S., Beaudoin A.J., Tortorelli D.A. A polycrystal plasticity model based on the mechanical threshold // Int. J. of Plasticity. – 2002. – Vol. 18. – P. 715–741.
149.Kratochvil J. A theory of non-proportional cyclic plasticity based on micromechanical approach // Proc. of IMMM-93. Int. Sem. On Microstruct. And Mech. Properties of New Enineering Mater. – Mie Academic Press. – 1993. – P. 89–94.
150.Kratochvil J., Tokuda M. Plastic response of polycrystalline metals subjected to complex deformation history // Trans. ASME. J. Engng. Mater. Technol. – 1984. – Vol. 106. – P. 299–303.
151.Kroner E. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen // Arch. Rational Mech. Anal. – 1960. – B. 4. – S. 273–334.
152.Lee E.H., Liu D.T. Elastic-plastic theory with application to plane-wave analysis // J. Appl. Phys. – 1967. – Vol. 38. – Р. 19–27.
153.Lee E.H. Elastic plastic deformation at finite strain // ASME J. Appl. Mech. – 1969. – Vol. 36. – P. 1–6.
154.Lin T.H. Analysis of elastic and plastic strains of a face – centered cubic crystal // J. Mech. Phys. Solids. – 1957. – Vol. 5. – No. 1. – P. 143–149.
155.Lion A. Constitutive modelling in finite thermoviscoplasticity:
a physical approach based on nonlinear rheological elements // Int.
J.Plast. – 2000. – Vol. 16. – Р. 469–494.
156.Ma A., Roters F.A. А constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression
of aluminium single crystals // Acta Materialia. – 2004. – Vol. 52. – Р. 3603–3612.
406
157.Ma A., Roters F., Raabe D. A dislocation density based consti-
tutive model for crystal plasticity FEM including geometrically necessary dislocations // Acta Materialia. – 2006. – Vol. 54. – Р. 2169–2179.
158.Ma A., Roters F., Raabe D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite
element modeling –Theory, experiments, and simulations // Acta Materialia. – 2006. – Vol. 54. – Р. 2181–2194.
159.Ma A., Roters F., Raabe D. A dislocation density based consti-
tutive law for BCC materials in crystal plasticity FEM // Computational Materials Science. – 2007. – Vol. 39. – Р. 91–95
160.Mahesh S., Tome C.N., McCabe R.J., Kaschner G.C., Beyerlein I.J. and Misra A. Application of a substructure-based hardening model to copper under loading path changes // Metallurgical and Mater. Trans. A. – 2004. – Vol. 35A. – P. 3763–3774.
161.Masima M. und Sachs G.O. Mechanische Eigenschaften von Messingkristallen // Z. Physik. – 1928. – B. 50. – S. 161–186.
162.Mayeur J.R., McDowell D.L. A three-dimensional crystal plas-
ticity model for duplex Ti–6Al–4V // Int. J. Plasticity. – 2007. – Vol. 23. – Р. 1457–1485.
163.McDowell D.L. An evaluation of recent development in hardening and flow rules for rate–independent non–proportional cyclic plasticity // Trans. ASME. J. Appl. Mech. – 1987. – Vol. 54. – No. 2. – P. 324–334.
164.McDowell D.L. Simple experimentally motivated cyclic plasticity model // J. Eng. Mech. – 1987. – Vol. 113. – No. 3. – P. 378–397.
165.McDowell D. L. Viscoplasticity of heterogeneous metallic materials // Mater. Sci. Eng. R. – 2008. – Vol. 62. – Р. 67–123.
166.McGinty R.D., McDowell D.L. A semi–implicit integration scheme for rate independent finite crystal plasticity // Int. J. of Plasticity. – 2006. – Vol. 22. – P. 996–1025.
167.Miehe C. Multisurface thermoplasticity for single crystals at large strains in terms of Eulerian vector updates // Int. J. Solids and Struct. – 1996. – Vol. 33. – No. 20–22. – P. 3103–3130.
407
168. Miehe C., Rosato D. Fast texture updates in fcc polycrystal plasticity based on a linear active-set-estimate of the lattice spin //
J.Mech. Physics Solids. – 2007. – Vol. 55. – P. 2687–2716.
169.Mroz Z. On the description of anisotropic work – hardening // J. Mech. Phys. Solids. – 1967. – Vol. 15. – No. 3. – P. 163–175.
170.Nicola L., Van der Giessen E., Gurtin M. E. Effect of defect en-
ergy on strain-gradient predictions of confined single-crystal plasticity // J. Mech. Physics Solids. – 2005. – Vol. 53 – Р. 1280–1294.
171.Niu Xiaode. Endochronic plastic constitutive equation coupled with isotropic damage evolution models // Eur. J. Mech. A / Solids. – 1989. – Vol. 8. – P. 293–308.
172.Nye J.F. Some geometrical relations in dislocated crystals // Acta Metall. – 1953. – Vol. 1. – Р. 153–162.
173.Oldroyd J. A rational formulation of the equations of plastic flow for a Bingham solid // Proc. Camb. Phil. Soc. – 1947. – Vol. 43. – Р. 100–105.
174.Oldroyd J.G. On the formulation of rheological equations of states // Proc. Roy. Soc. Lond. – 1950. – Vol.A 200. – Р. 523–541.
175.Orowan E. Problems of plastic gliding // Proc. Phys. Soc. – 1940. – Vol. 62. – P. 8–22.
176.Ortiz M., Repetto E.A. Nonconvex energy minimization and
dislocation structures in ductile single crystals // Journal of the Mechanics and Physics of Solids. – 1999. – Vol. 49. – Р. 397–462.
177.Pan W.F., Chiang W.J., Wang C.K. Endochronic analysis for rate-despendent elasto-plastic deformation // Int. J. Solids and Structures. – 1999. – Vol. 36. – P. 3215–3237.
178.Pan, J., Rice, J.R. Rate sensitivity of plastic flow and implications for yield-surface vertices // Int. J. Solids Struc. – 1983. – Vol. 19. – P. 973–987.
179.Peeters B., Bacroix B., Teodosiu C., Van Houtte P., Aernoudt E. Work hardening–softening behaviour of b.c.c polycrystalls during changing strain paths: II. TEM observations of dislocation sheets in an IF steel during two–stage strain paths and their representation in terms of dislocation densities // Acta Mater. – 2001. – Vol. 49. – P. 1621–1632.
408
180.Peeters B., Seefeldt M., Teodosiu C., Van Houtte P., Aernoudt E. Work hardening–softening behaviour of b.c.c polycrystalls during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress–stpain of an IF steel during twostage strain paths // Acta Mater. – 2001. – Vol. 49. – P. 1607–1619.
181.Portevin A., Le Chatelier F. Sur un phenomene observe lors de l’essai de traction d’alliages en cours de transformation // Compt. Rend. Acad. Sci. Paris. – 1923. – Vol. 176. – P. 507–510.
182.Potirniche G.P., Horstemeyer M.F., Ling X.W. An internal
state variable damage model in crystal plasticity // Mechanics of Materials. – 2007. – Vol. 39. – Р.941–952.
183.Poynting J.H. On pressure perpendicular to the shear planes in finite pure shears and on the lengthening of loaded wires when twisted // Proc. Roy. Soc. (London). – 1909. – Ser.A. – Vol. 82. – P. 546–559.
184.Poynting J.H. On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortion waves in steel // Proc. Roy. Soc. (London). – 1912. – Ser.A. – Vol. 86. – P. 534–561.
185.Reuss A.A. Berechnung der Fliesgrenze von Misch-Kristallen auf Grund der Plastizitats-Bedinnung fur Einkristalle // Z. Angew. Math. Und Mech. – 1929. – Bd.9. – H.1. – S. 49–58.
186.Rousselier G., Leclercq S. A simplified «polycrystalline» model
for viscoplastic and damage finite element analyses // Int. J. Plasticity. – 2006. –Vol. 22. – Р. 685–712.
187.Saramito P. A new constitutive equation for elastoviscoplastic fluid flows // J. Non-Newtonian Fluid Mech. – 2007. – Vol. 145. – Р. 1–14.
188.Sauzay M. Analytical modelling of intragranular backstresses
due to deformation induced dislocation microstructures // Int. J. Plasticity. – 2008. – Vol. 24. – Р. 727–745.
189.Schwedoff T. La rigidit´e des fluids // Rapports du Congr`es Intern. de Physique. – 1900. – Vol. 1. – Р. 478–486.
190.Shu J. Y., Fleck N. A. Strain gradient crystal plasticity: size-
dependent deformation of bicrystals // J. Mech. and Phys. Solids. – 1999. – 47. – Р. 297–324.
409
191.Shutov A.V., Kreisig R. Finite strain viscoplasticity with nonlinear kinematic hardening: Phenomenological modeling and time in-
tegration // Comput. Methods Appl. Mech. Engrg. – 2008. – Vol. 197. – Р. 2015–2029.
192.Svendsen B. Continuum thermodynamic models for crystal
plasticity including the effects of geometrically-necessary dislocations // J. Mech. Phys. Solids. – 2002. – Vol. 50. – Р. 1297 – 1329.
193.Swift H.W. Length changes in metals under torsional overstrain // Engineering. – 1947. – Vol. 163. – P. 253.
194.Taleb L., Cailletaud G., Blaj L. Numerical simulation of complex ratchening tests witch a multi-mechanism model type // Int. J. Plasticity. – 2006. – Vol. 22. – P. 724–753.
195.Taylor G.I. Plastic strain in metals // J. Inst. Metals. – 1938. – Vol. 62. – P. 307–324.
196.Taylor G.I., Elam C.F. The distortion of an aluminium crystal during a tensile test // Proc. Roy. Soc. (London). – 1923. – Ser. A 102. – P. 643–647.
197.Taylor G.I., Elam C.F. The plastic extension and fracture of aluminium crystals // Proc. Roy. Soc. (London). – 1925. – Ser. A 108. – P. 28–51.
198.Tinga T., Brekelmans W.A.M., Geers M.G.D. A straingradient crystal plasticity framework for single crystal nickel-based super-
alloys // Report National Aerospace Laboratory NLR-TP-2005-628. – Amsterdam. – 2005. – 35 р.
199.Tokuda M., Kratochvil J. Prediction of subsequent yield sur-
face by a simple mechanical model of polycrystal // Arch. Mech. – 1984. – Vol. 36. – No. 5–6. – P. 661–672.
200.Tokuda M., Kratochvil J., Ohashi Y. On mechanism of induced plastic anisotropy of polycrystalline metals // Bull. JSME. – 1982. – Vol. 25. – No. 208. – P. 1491–1497.
201.Tokuda M., Kratochvil J., Ohno N. Inelastic behaviour of polycrystalline metals under complex loading condition // Int. J. of Plasticity. – 1985. – Vol. 1. – P. 141–150.
410