
- •Введение
- •Электрические микромашины
- •Введение
- •Лекция 1
- •Раздел 1. Электрические микромашины общепромышленного примения
- •I. Основы теории однофазных и несимметричных двухфазных микромашин переменного тока
- •§ 1.1. Намагничивающие силы и магнитные поля однофазных микромашин
- •§ 1.2. Намагничивающие силы и магнитные поля несимметричных двухфазных микромашин
- •Лекция 2 § 1.3. Частота вращения эллиптического поля
- •§ 1.4. Получение кругового вращающегося магнитного поля в несимметричных двухфазных микромашинах
- •§ 1.5. Пусковые моменты несимметричных двухфазных микромашин
- •§ 1.6. Метод симметричных составляющих применительно к несимметричным двухфазным микромашинам.
- •Лекция 3 § 1.7. Схемы замещения несимметричных двухфазных микромашин
- •Лекция 4 § 1.8. Уравнения токов
- •§ 1.9. Электромагнитная мощность. Вращающий момент несимметричного двухфазного микродвигателя
- •§ 1.10. Энергетическая диаграмма. Потери мощности
- •Лекция 5 2. Асинхронные микродвигатели
- •§ 2.1. Общие сведения
- •§ 2.2. Принцип действия и основные особенности однофазных асинхронных микродвигателей
- •§ 2.3. Свойства фазосдвигающих элементов
- •§ 2.4. Получение кругового поля в конденсаторном микродвигателе
- •Лекция 6 § 2.5. Асинхронный двигатель с пусковым конденсатором
- •§ 2.6. Асинхронный двигатель с рабочим конденсатором
- •§ 2.7. Асинхронный двигатель с пусковым и рабочим конденсаторами
- •§ 2.8. Асинхронный двигатель с пусковым сопротивлением
- •§ 2.9. Асинхронный двигатель с экранированными полюсами
- •§ 2.10. Универсальный асинхронный двигатель
- •§ 2.11. Включение трехфазного двигателя в однофазную сеть
- •Лекция 7 3. Синхронные микродвигатели
- •§ 3.1. Синхронные микродвигатели с постоянными магнитами
- •§ 3.2. Особенности пуска двигателей с постоянными магнитами
- •Лекция 8 § 3.3. Синхронные реактивные микродвигатели
- •§ 3.4. Вход в синхронизм
- •Лекция 9 § 3.5. Синхронные гистерезисные микродвигатели
- •Лекция 10 4. Универсальные коллекторные микродвигатели
- •Лекция 11 5. Бесконтактные двигатели постоянного тока
- •§ 5.1. Датчики положения ротора
- •Лекция 12 6. Тихоходные двигатели
- •§ 6.1. Дробные обмотки
- •§ 6.2. Двигатели с электромагнитной редукцией
- •Лекция 13 § 6.3. Двигатели с катящимся ротором
- •§ 6.4. Двигатели с волновым ротором
- •Лекция 14 7. Пьезоэлектрические микродвигатели
- •§ 7.1. Пьезоэлектрический эффект
- •§ 7.2. Конструкция и принцип действия пьезоэлектрических микродвигателей
- •§ 7.3. Применение пьезоэлектрических микродвигателей
- •Лекция 15 электрические микромашины автоматических устройств
- •1. Исполнительные двигатели
- •Асинхронные исполнительные двигатели § 1.1. Общие сведения
- •§ 1.2. Уравнения токов и схемы замещения асинхронных исполнительных двигателей
- •§ 1.3. Характеристики асинхронного исполнительного двигателя при разных способах управления
- •Лекция 18 2. Исполнительные двигатели постоянного тока
- •§ 2.1 Якорное управление исполнительным двигателем
- •§ 2.3. Полюсное управление исполнительным двигателем
- •Лекция 16
- •Лекция 18 § 1.4. Динамические свойства асинхронных исполнительных двигателей
- •§ 1.5. Самоход и пути его устранения
- •§ 1.6. Конструкции асинхронных исполнительных двигателей
- •Лекция 27 6. Поворотные трансформаторы § 6.1 Общие положения
- •§ 6.2. Синусно-косинусные поворотные трансформаторы.
- •§ 6.3 Симметрирование синусно-косинусных поворотных трансформаторов.
- •Лекция 19 § 2.3. Импульсное управление исполнительным двигателем постоянного тока
- •§ 2.4. Динамические характеристики исполнительных двигателей постоянного тока
- •§ 2.5. Конструкции исполнительных двигателей постоянного тока
- •Лекция 22 информационные микромашины автоматических устройств
- •4. Тахогенераторы § 4.1. Общие сведения
- •§ 4.2. Асинхронный тахогенератор
- •§ 4.3. Погрешности асинхронного тахогенератора
- •Лекция 23 § 4.4. Акселерометр
- •§ 4.5. Синхронный тахогенератор
- •§ 4.6. Тахогенераторы постоянного тока
- •Лекция 24 5. Индукционные машины систем синхронной связи - сельсины
- •§ 5.1 Общие положения
- •§ 5.2 Устройство сельсинов
- •§ 5.3 Работа сельсинов в индикаторном режиме
- •Лекция 25 мдс ротора
- •§ 5.4 Максимальный синхронизирующий момент
- •§ 5.5. Факторы, влияющие на точность работы сельсинов в индикаторном режиме
- •Лекция 26
- •§ 5.6. Работа сельсинов в трансформаторном режиме
- •§ 5.7. Некоторые особенности конструкции сельсинов
- •§ 5.8. Дифференциальный сельсин
- •§ 5.9. Магнитоэлектрические сельсины (магнесины)
- •Лекция 28
- •§ 6.4 Линейный поворотный трансформатор
- •§ 6.5 Поворотный трансформатор-построитель
- •§ 6.6. Погрешности поворотных трансформаторов
- •§ 6.7. Многополюсные поворотные трансформаторы
- •§ 6.8. Синусные обмотки
- •Заключение
- •Лекция 20 3. Шаговые двигатели
- •§ 3.1. Общие сведения о шаговых двигателях
- •§ 3.2. Реверсивные шаговые двигатели
- •Лекция 21
- •§ 3.3. Статический синхронизирующий момент
- •§ 3.4. Режимы работы шаговых двигателей
- •§ 3.5. Основные параметры и характеристики шаговых двигателей
Лекция 4 § 1.8. Уравнения токов
Повторим еще раз уравнения (1.14):
Согласно методу симметричных составляющих
где wэА = wАkоб.А wэВ = wВkоб.В - эффективные числа витков фаз А и В.
Разделив левую и правую части последних выражений на wэB, получим
(1.23)
где k = wэВ/wэА-
уже известный коэффициент трансформации
двигателя. Подставляя (1.23) в выражение
B
и решая систему двух уравнений относительно
IA1,
IA2
, получим
(1.24)
Рассчитав IA1 и IA2 , легко определить IB1 и IB2 , а затем найти полные токи фаз А и В.
§ 1.9. Электромагнитная мощность. Вращающий момент несимметричного двухфазного микродвигателя
Поскольку в рассматриваемых микродвигателях имеют место поля токов прямой и обратной последовательностей, электромагнитная мощность - мощность, передаваемая от статора к ротору магнитным полем, должна быть равна сумме мощностей этих последовательностей.
Как известно, при круговом поле электромагнитная мощность равна потерям в активном сопротивлении ротора, деленным на скольжение s для прямого и на 2 - s для обратного полей
Pэм1 = Pэм1А + Pэм1В = I2рA1·rрA/s + I2pВ1·rpВ/s , |
(1.25) |
Pэм2= Pэм2А+ Pэм2В= I2рA2·rрA/2-s + I2pВ2·rpВ/2-s. |
(1.26) |
Если выразить токи и сопротивления фазы В через токи и сопротивления фазы А
IB1 = IA1/k; IB2 = IA2/k ; rpB = k2rpA,
подставить в (1.25), (1.26), то после преобразований получим
(1.27)
Выражение (1.27) неудобно для практических расчетов тем, что в него входят токи ротора. Это обстоятельство можно обойти, если воспользоваться схемами замещения рис.1.7. Действительно, в параллельном соединении: “контур намагничивания - цепь ротора” (рис.1.7), существует только одно активное сопротивление rрA. В преобразованных схемах замещения рис.1.8 в состав ZрA1, ZрA2 тоже входит активное сопротивление rрA1, rрA2. Поэтому в соответствии с законом сохранения энергии потери мощности в этих сопротивлениях должны быть одинаковыми, т.е.
С учетом этого выражение электромагнитной мощности приобретает простой вид
(1.28)
Если разделить электромагнитную мощность на синхронную угловую частоту вращения, получим выражение вращающего момента
М = Рэм/ω1= Рэм1/ω1– Рэм2/ω1. |
(1.29) |
При этом перед электромагнитной мощностью обратной последовательности следует поставить знак "минус", ибо обратное поле создает не движущий, а тормозной момент.
На рис. 1.10 представлена механическая характеристика асинхронного двигателя при эллиптическом поле, как результат действия прямого и обратного полей, создающих вращающий М1 и тормозной М2 моменты.
Рис.1.10. Механическая характеристика двухфазного асинхронного двигателя с эллиптическим магнитным полем
Из рис. 1.10 видно негативное действие обратного поля:
снижение максимального и пускового моментов,
увеличение номинального скольжения и, как следствие, увеличение потерь в роторе, снижение КПД машины.
Задача 1.7.Определить пусковой момент несимметричного двухфазного двигателя, параметры схемы замещения которого
хсA = 26Ом; rсA = 34 Ом; xmA = 430 Ом; m = 2; rрA= 30 Ом; xрA = 22 Ом; f = 50 Гц; U = 220 В.