Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vopros_vtoroy_fizika_glavnoe.docx
Скачиваний:
75
Добавлен:
15.02.2015
Размер:
454.94 Кб
Скачать

1.5. Действие магнитного поля на движущуюся заряженную частицу.

Как уже было отмечено, важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся электрические заряды. В результате опытов было установлено, что любая заряженная частица, движущаяся в магнитном поле, испытывает действие силы F, которая пропорциональна величине магнитного поля в этой точке. Направление этой силы всегда перпендикулярно скорости движения частицы и зависит от угла между направлениями. Эта сила называетсясилой Лоренца. Модуль данной силы равенгдеq– величина заряда;v– скорость его движения;– вектор магнитной индукции поля; α – угол между векторамии. В векторной форме выражение для силы Лоренца имеет вид.

Для случая когда скорость заряда перпендикулярна вектору магнитной индукции, направление данной силы определяется с помощью правила левой руки: если ладонь левой руки расположить так, чтобы вектор входил в ладонь, а пальцы направить вдоль(дляq>0), то отогнутый под прямым углом большой палец укажет направление силы Лоренца дляq>0 (рис.1.11, а). Дляq< 0 сила Лоренца имеет противоположное направление (рис.1.11,б).

Поскольку данная сила всегда перпендикулярна скорости движения частицы, она изменяет только направление скорости, а не ее модуль, и поэтому сила Лоренца работы не совершает. То есть магнитное поле не совершает работы над движущейся в нем заряженной частицей и ее кинетическая энергия при таком движении не изменяется.

Вызываемое силой Лоренца отклонение частицы зависит от знака q. На этом основано определение знака заряда частиц, движущихся в магнитных полях. Магнитное поле не действует на заряженную частицу () в двух случаях: если частица неподвижна () или если частица движется вдоль силовой линии магнитного поля. В этом случае векторыпараллельны иsinα=0. Если вектор скоростиперпендикулярен, то сила Лоренца создает центростремительное ускорение и частица будет двигаться по окружности. Если скорость направлена под углом к, то заряженная частица движется по спирали, ось которой параллельна магнитному полю.

На данном явлении основана работа всех ускорителей заряженных частиц – устройств, в которых под действием электрических и магнитных полей создаются и ускоряются пучки высокоэнергетических частиц.

Действие магнитного поля Земли вблизи земной поверхности изменяет траекторию движения частиц, испускаемых Солнцем и звездами. Этим объясняется так называемый широтный эффект, заключающийся в том, что интенсивность космических лучей, доходящих до Земли, вблизи экватора меньше, чем в более высоких широтах. Действием магнитного поля Земли объясняется тот факт, что полярное сияние наблюдается только в самых высоких широтах, на Крайнем Севере. Именно в том направлении магнитное поле Земли отклоняет заряженные космические частицы, которые вызывают свечение атмосферы, называемое полярным сиянием.

Кроме магнитной силы, на заряд может действовать также уже знакомая нам электрическая сила , и результирующая электромагнитная сила, действующая на заряд, имеет вид

Эта формула называется формулой Лоренца. Действию такой силы подвергаются, например, электроны в электронно-лучевых трубках телевизоров, радиолокаторов, электронных осциллографов, электронных микроскопах.

2.6 Закон полного тока для магнитного поля в вакууме(теормема о циркуляции вектора В)

В разделе “Электростатика” было доказано, что циркуляция вектора напряженности электростатического поля вдоль замкнутого контура равна нулю, откуда следует потенциальный характер электростатического поля. Одним из основных отличий магнитного поля от электростатического поля является его непотенциальность. Для доказательства этого рассмотрим линейный интеграл от В по замкнутому пути в магнитном поле, создаваемом током, т.е.

где – вектор элемента длины контура, направленный вдоль обхода контура; В – проекция векторана направление касательной к контуру. Данный интеграл называется циркуляцией векторапо заданному замкнутому контуру.

Рассмотрим частный случай: круговой путь является силовой линией радиусаRмагнитного поля прямолинейного бесконечного проводника с током (рис.1.9). Магнитная индукция для этого случая была подсчитана ранее, и во всех точках окружности векторсоставляет:

Угол между векторами иравен нулю, поэтомуcos(,)=1. Из полученного результата следует, что циркуляция вектора магнитной индукции вдоль силовой линии прямолинейного проводника с током не равна нулю, т.е. поле такого проводниканепотенциально. Оно называетсявихревым. Полученная формула справедлива для любой формы замкнутого контура, охватывающего проводник с током.

Пусть теперь наш контур произвольной формы охватываетnпроводников с токамиI1, …In. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. При этом положительным считается ток, если он с направлением обхода контура образует правовинтовую систему. Ток противоположного направления считается отрицательным.

Разберем пример, изображенный на рис.1.12. Найдем сумму токов, т.е. полный ток, охватываемый контуром :

Ток I3не учитывается, т.к. он не охватывается контуром. В результате имеем

Таким образом, циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром:

Данное выражение представляет собой закон полного тока для магнитного поля в вакууме, или теорему о циркуляции вектора В.

Все вышерассмотренное относится к вакууму. Можно доказать, что циркуляция вектора вдоль замкнутого контура, не охватывающего проводник с током, равна нулю.

Рассмотренная нами теорема имеет в магнитостатике такое же значение, как теорема Гаусса в электростатике. Она позволяет находить магнитную индукцию различных полей без применения закона Био-Савара-Лапласа.

2.7. Магнитный момент контура с током.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]