
- •1.1 Газотурбинный двигательэ Общие сведения
- •1.2 Действительный простой цикл
- •1.3 Сложные циклы. Цикл с регенерацией
- •1.4 Цикл с промежуточным охлаждением и регенерацией
- •2. Наддув как основной метод повышения удельной мощности дизеля. Схемы наддува
- •2.1 Общие сведения
- •3. Агрегаты наддува
- •3.1 Принцип действия и устройство газовой турбины
- •3.2 Кинематика газового потока в проточной части турбины. Треугольники скоростей
- •3.3 Работа на лопатках и мощность турбины
- •4. Активная и реактивная ступени турбины
- •4.1 Активная ступень турбины
- •4.2 Процесс расширения газа в турбинной ступени
- •5. Потери в турбине и к.П.Д.
- •5.2 Потери в рабочем колесе
- •5.3 Потери с выходной скоростью
- •5.4 Коэффициенты полезного действия турбины
- •6.1 Характеристики турбины
- •6.2 Требования к газовой турбине
- •7. Радиальные турбины
- •7.1 Особенности работы радиальной центростремительной турбины
- •7.2 Достоинства и недостатки осевых и радиальных турбин
- •8. Основы теории компрессоров
- •8.1 Центробежные компрессоры. Схема устройства и принцип действия
- •8.2 Процесс сжатия в центробежном компрессоре
- •8.3 К.П.Д. Компрессора
- •8.4 Треугольники скоростей. Работа и мощность компрессора
- •8.5 Характеристики центробежных компрессоров
- •8.6 Помпаж
- •8.7 Потери в компрессоре
8.1 Центробежные компрессоры. Схема устройства и принцип действия
Рис. 8.1
На рис. 8.1 изображена принципиальная схема устройства центробежного компрессора. Воздух поступает из атмосферы во входное устройство 1 и далее перетекает в рабочее колесо 4, диффузор 3 и воздухосборник (улитку) 2. Рабочее колесо закреплено на валу турбины 5.
Входное устройство предназначено для формирования потока воздуха с тем, чтобы он поступал в рабочее колесо равномерно и с минимальными потерями. Для придания потоку воздуха необходимого направления и повышения его скорости в конструкции компрессора предусматривается неподвижный или вращающийся направляющий аппарат.
На
рис. 8.2 показан характер изменения
давления р,
температуры
Т
и
скорости с
воздуха
в проточной части компрессора. Во входном
устройстве
1 давление уменьшается от р0
до
р1,
температура — от То
до Т1
а
скорость возрастает от с0
до
с1.
Уменьшение
давления и
температуры воздуха перед входом в
рабочее колесо 2
является
следствием
повышения скорости во входном устройстве
|
(8.1) |
Соответственно уменьшается удельный вес воздуха
Рис. 8.2
Рабочее колесо центробежного компрессора представляет собой крыльчатку с радиальными или криволинейными лопатками. Воздух вращается вместе с колесом и, перетекая под действием центробежных сил в направлении от центра к периферии, сжимается до давления р2. При этом возрастают температура и скорость воздуха. Энергия, подведенная к рабочему колесу компрессора, расходуется на повышение давления и кинетической энергии воздуха и на преодоление потерь, неизбежно возникающих при работе компрессора.
Рабочие колеса бывают открытыми, закрытыми и полузакрытыми (рис. 8.3). У открытого колеса (а) межлопаточный канал с торцов ограничивается стенками корпуса компрессора, а само колесо состоит из радиальных лопаток и втулки. Большие гидравлические потери ограничивают применение открытых колес, несмотря на простоту их конструкции.
Рис. 8.3
У закрытых колес (б) лопатки ограничены с торцов стенками, передняя из которых имеет отверстия для входа воздуха. Преимущества закрытых колес - минимальные гидравлические потери и высокий к.п.д. Недостатки: сложность изготовления и ограниченные, по сравнению с открытыми колесами, окружные скорости.
Полузакрытые колеса (в) имеют одну торцовую стенку с лопатками, обладающими достаточно высокой жесткостью и прочностью. Гидравлические потери в полузакрытых колесах меньше, чем в открытых, но больше, чем в закрытых. Лопатки рабочего колеса выполняются радиальными (рис. 8.4) и криволинейными, с передними торцами, загнутыми вперед (по направлению вращения) и назад (против направления вращения). Лопатки, загнутые по направлению вращения, позволяют обеспечить безударный вход, уменьшить потери в рабочем колесе и увеличить к.п.д. Радиальные лопатки позволяют получить высокие значения напора и к.п.д., весьма просты в изготовлении и потому широко применяются в наддувочных компрессорах.
Рис. 8.4
Диффузор представляет собой расширяющийся канал. Так как площадь сечения диффузора на выходе больше, чем на входе, то при перетекании воздуха скорость уменьшается от с2 до с3, а давление и температура возрастают соответственно от р2 до р3 и от Т2 до Т3. Следовательно, в диффузоре происходит преобразование части кинетической энергии воздушного потока в работу сжатия. Диффузоры выполняются щелевыми и лопаточными. Установка лопаточного диффузора позволяет более эффективно использовать кинетическую энергию для повышения давления, уменьшить потери на трение и увеличить к.п.д. компрессора. Лопаточный диффузор представляет собой круговую решетку из профилированных лопаток (см. рис. 8.8). Обычно вследствие уменьшения скорости сжатие продолжается также в улитке, где воздух собирается и направляется во впускной коллектор двигателя.
Отношение
давления воздуха на выходе из компрессора
рк
к
давлению
p1
перед рабочим колесом называется
степенью повышения давления в компрессоре
.
Одноступенчатый центробежный компрессор
позволяет получить
до 3,5÷4, и расход воздуха до 5м3/сек:
При
необходимости обеспечить более высокие
степени повышения давления применяют
двухступенчатые компрессоры.