Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом.docx
Скачиваний:
179
Добавлен:
13.02.2015
Размер:
3.11 Mб
Скачать

2.3.3.Сорбционно-коалесцирующий материал

В качестве сорбционно-коалесцирующего материала в данной работе будет использоваться сорбент «Мегасорб», состоящий из сорбирующего материала в виде объемно гофрированного нетканого полотна из полимерных волокон с гидрофобной поверхностью и из коалесцирующего слоя из гидрофильного супертонкого волокна, с диэлектрической проницаемостью больше, чем у гидрофобной поверхности. Коалесцирующий материал представлет собой послойную композицию из супертонкого базальтового волокна и стеклянного волокна толщиной 10-15 мкм в сочетании с полипропиленовыми и полиэфирными волокнами, что обеспечило формирование ДЭС в процессе фильтрации.[40]

. Схема двойного электрического слоя в процессе разделения эмульсии изображена на рисунке 2.3.3.1.в несколько стадий:

- переход ДЭС с частиц нефтепродукта в ДЭС на границе раздела слоев материала;

- коалесценцию частиц;

-выведение скоалесцированного нефтепродукта с фильтрующей поверхности под действием сил гравитации по полым каналам гофрированного полимерного нетканого материала;

- отделение накопившейся пленки нефтепродукта и вывод очищенной водной фазы;

- дополнительную очистку водной фазы в слое гидрофильного материала.

Рис.2.3.3.1. Схема двойного электрического слоя в процессе разделения эмульсии: 1 - двойной электрический слой, сформированный на поверхности раздела двух материалов с различной диэлектрической проницаемостью, 2 - скоалесцированные частицы эмульгированной нефти, 3 - эмульгированная частица нефти, покрытая двойным электрическим слоем.

2.4. Мембранный метод

2.4.1.Мембранные методы достоинства и недостатки

В качестве перспективного современного метода для утилизации водно-масляных растворов в различных отраслях промышленности вот уже более 20 лет используются мембранные методы разделения.[41] Широко мембранный метод используют для обработки воды и водных растворов, очистки сточных вод, для регенерации отработанных моющих и обезжиривающих растворов, для улавливания и концентрирования масел и нефтепродуктов постов мойки автотранспортных средств, трюмовых (льяльных) вод судов, балластных вод танкеров

Востребованность мембранного метода обусловлена в эффективности удаления высодисперсных, тонкоэмульгированных и стабильных эмульсий. Мало того считается этот метод безреагентный и полностью автоматизированый, что уменьшает действия рабочей силы.

Наряду с неоспоримыми достоинствами, мембранные технологии имеют ряд значительных недостатков, таких как относительно высокая стоимость мембран, высокие требования к уровню автоматизации, наличие жестких требований к составу и качеству воды, подаваемой на мембраны. Но несмотря на это большенство технологических проектов по очистке воды завершает мембранная стадия.

2.4.2.Ультрафильтрация для удаления нетепродуктов

Для удаления нефтепродуктов из сточных вод используются различные мембранные методы: микрофильтрация, ультрафильтрация, обратный осмос, первопорация, нанофильтрация с трубчатыми, плоскими и половолоконными мембранами из поливинилидендифторида (ПВДФ), полиэфирсульфона (PES) [41-47] Наиболее достоверными методами считается ультрафильтрация и микрофильтрация.

Ультрафильтрация – это процесс мембранного разделения растворов высокомолекулярных и низкомолекулярных соединений. Движущей силой процесса является разность давлений по обе стороны мембраны (рабочее давление)[41] Преимущества ультрафильтрации заключается в ситовом механизме, где любая частица, размер которой превышает размер пор, отсекается, то есть происходит отделения загрязнений на поверхности мембраны.

Поток воды в ультрафильтрации направляется прямо через мембрану или поперечным током, при этом порция входящей воды течет по поверхности мембраны для удаления большинства коллоидных частиц. Более востребована считается поперечная ультрафильтрация водомасляных эмульсий с использованием недорогих керамических [48], полисульфоновых[49], поливиниловый спирт(PVA), поливинилиденфторидовых (PVDF)[40,49] мембран. Исследование показало, что, с увеличением скорости поперечного потока, производительность значительно увеличивается, но задерживание масла показывает тенденцию к снижению. [49] Концентрационная поляризация и адсорбции на поверхности мембраны так же можно убрать увеличением скорости поперечного потока .[51] На рисунке 2.4.2.1.представлены эксперименты в диапазоне скоростей потока 1.08-2.01 м / с давлении 0,10 МПа, температура 25 ° С и концентрация масла 242,25 мг / л. С увеличением скорости увеличивается производительность и степень очистки, что объясняется уменьшением концентрации каплей масла на поверхности мембраны и ослабляет эффект концентрационной поляризации. [43]

Рис.2.4.2.1.Влияние скорости поперечного потока на производительность и степень очистки.

Следовательно на процесс разделения эмульсии влияет мембранный материал, размер пор и трансмембранное давление. Не все типы мембран являются эффективными в разрушении эмульсии вода-в-масле. .Деэмульгация возможна с мембраной, имеющей поры размер меньше диаметра эмульсии капелек. Чем меньше размер пор, тем лучше деэмульгация эффективность. Тем не менее, небольшие поры в сочетании с более низким трансмембранным давлением приведет к низкой производительности.Толщина мембраны не играет существенной роли[43]Эффект трансмембранного давления на производительность и степень очистки при температуре 25 ° С, скоростью 2,01 м / с и концентрацией масла 242.25 мг / л, представлен на рисунке 2.4.2.2. Наблюдаемая производительность и степень очистки увеличивается с ростом трансмембранное давление. Это можно объяснить тем, что чем выше давление, тем капли воды быстро проходят через поры мембраны, в то же время, поверхность становится плотнее, так что задержка масла увеличивается.[43]

Рис.2.4.2.2.Влияние давления на производительность и степень очистки

Кроме того влияют на ультрафильтрацию факторы такие как концентрации масла и температура. Производительность возрастает вместе с увеличением температуры, но падает с ростом концентрация масла. [44] На рисунке. 2.4.2.3. показано влияние концентрации нефти на поток мембраны и удержание масла при температуре 25 ° С, скорости поперечного потока 2,01 м / с и давлении 0,20 МПа. Результаты показывают, что чем более высокая концентрация масла, тем меньше производительность. Причиной может быть то, что капли масла образуют гидрофобную пленку на поверхности мембраны, известной как "концентрационная поляризация"[43]

Рис.2.4.2.3.Влияние концентрации нефти на производительность и степень очистки.

На рисунке 2.4.2.4. показывает влияние температуры на производительность мембран и степень очистки при давлении 0,10 МПа, скорость 2,01 м / с и концентрации нефти 242.25 мг / л Повышение температуры приводит к увеличении производительность, но ухудшению степени очистки, что соответствует обычному правилу ультрафильтрации. [43]

Рис.2.4.2.4.Влияние температуры на производительность и степень очистки.