Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом.docx
Скачиваний:
179
Добавлен:
13.02.2015
Размер:
3.11 Mб
Скачать

2.3.Коалесценция эмульсии

2.3.1 Механизм протекания коалесценции

Коалесценция – это укрупление мелких капель при их слипании, вплоть до образования сплошной пленки, что приводит к расслоению фаз. Если плотность дисперсной фазы меньше плотности дисперсионной среды

(<), то коалесценсия стимулирует процесс всплывания дисперсной фазы, а в противном случае происходит процесс седиментации капель (>). Благодаря коалесценсии дисперсная система становится седиментационно неустойчивой, стремясь уменьшить свою межфазную поверхность.

Мерой неустойчивости является избыточная энергия Гельмгольца () дисперсной системы, которая уменьшается при коагуляции:[8]

, (8)

где - поверхностное натяжение на границе дисперсной фазы со средой, Дж/м2, - удельная поверхность, м2, - общая масса дисперсных частиц, мг.

На рисунке 2.3.1.1.изображен процесс протекания коалесценции в три стадии. Первая стадия является лимитируещей - сближение двух капель друг с другом. Вторая стадия, образование «перешейка» возле точки касания, связана с увеличением общей поверхности и кинетической энергии капель.

Скорость капель определяется коэффициентом диффузии сферической дисперсной частицы и радиусом r, определяется уравнением Эйнштейна:

, (9)

где - постоянная Больцмана, равная 1,38*1023 Дж/К, Т-температура, К, - вязкость дисперсионной среды, Па*с.

Третья стадия - перетекание жидкости из одной капли в другую, благодаря разности капиллярных давлений и зависит от радиусов капель. Капля с меньшим радиусом перетекает в каплю с большим радиусом, всвязи с большим каппилярным давлением. По мере протекания разность капиллярных давлений увеличивается, поэтому перетекание идет с нарастающей скоростью и слияние капель маловязких жидкостей происходит очень быстро.

Рис 2.3.1. Стадии коалесценсии

Кинетику коалесценсии можно описать как реакцию второго порядка. Константу скорости коалесценсии К можно рассчитать по уравнению:

, (10)

где - число капель, шт,- число капель в единице объема исходной эмульсии, шт,- время после начала процесса, с.

Поскольку скорость быстрой коалесценсии капель определяется частотой их столкновений, то большое влияние оказывает вязкость дисперсионной среды, а именно при ее увеличении сближение капель замедляется.

2.3.2.Математическая модель коалесценции.

Принципиальное отличие коалесцирующих фильтров состоит в осаждении и коалесценции дисперсной фазы на поверхности и в зазорах загрузки фильтра, где образуют непрерывную фазу, способную удаляться из объема фильтра под действием гравитационных сил. Принудительное движение эмульсии через загрузку в зависимости от направления осредненного движения может как способствовать так и препятствовать удалению дисперсной фазы из фильтра. Так же отличие и в гидродинамическом факторе, заключается в перемещении частиц из потока на поверхность покрывающей их дисперсной фазы. С учетом малых радиусов каналов осаждение в основном осуществляется за счет седиментации, но в силу неоднородности гидродинамического поля каналов, происходит градиентная коалесценция капель между собой. В итоге осредненная скорость седиментации капель, пропорциональная квадрату диаметра капель, увеличивается. [32] В результате вышеизложенного можно сделать вывод о работе коалесцирующего фильтра в три стадии:

-изменение дисперсного состава капель в результате их коалесценции в неоднородном гидродинамическом поле в поровом пространстве фильтра,

-осаждение капель из потока на поверхность гранулфильтрующей загрузки, покрытой масляной пленкой за счет действия гидродинамических, гравитационных и поверхностных сил,

-удаление пленки осадка с поверхности гранул за счет гравитационных сил и гидродинамического выдувания. [33]

Для описания коалесцентного разделения при прохождении через фильтр пользуются капиллярной моделью порового пространства[32] Так же коалесценция определяется периодом утоньшения пленки дисперсионной среды, гидродинамической силы потока нефтяных частиц и разность сил Архимеда, тяжести и сопротивления среды, приводящей к перемещению во внутреннюю поверхность порового канала, где возможна коалесценция и вероятное удаление из потока. На состояние нефтяных частиц вляют так же процессы, проходящие в межфазных пограничных слоях элементов загрузочного материала. На рис 2.3.2.1.изображен пограничный слой у поверхности коалесцентов, состоящий из двух слоев: турбулентный, где частички образуют эллиптическую форму в поровом канале загрузки и ламинарный, где приобретают гантелеобразную форму. [34]

Рис 2.3.2.1 Схема трансформации нефтяных частич в пограничном слое коалесцирующего фильтра: 1-ламинарный поток водонефтяной эмульсии, 2-пограничный турбудентный слой, 3-ламинарный пограничный слой с повышенной плотностью, 4-нефтяные частицы,5- шейка нефтяных частич, 6-точка контакта нефтяных частиц с поверхностью коалесцента, 7- поверхность коалесцирующего фильтра

Из всего вышеперчисленного можно выделить два процесса протекающих в коалесцирующих фильтрах- коалесценция между каплями эмульсий (контактную) и между каплей и поверхностью загрузки (гидродинамическую). Разработана математическая модель процессов гидродинамической коалесценции и дробления капель нефти в фильтрационном потоке коалесцирующей насадки [35], но модель предназначена для достаточно концентрированных и грубодисперсных эмульсий. В работах других авторов[36] предпринята попытка создать коллоидно-гидродинамическую теорию разделения прямых эмульсий методом контактной коалесценции, учитывающую изменение состава эмульсии сточных вод в результате межкапельной коалесценции в поровых каналах фильтрующей загрузки и эвакуацию пленки из поровых каналов. Но рассмотрен только стационарный режим работы фильтра, когда очистная способность фильтра зависит от времени его работы из-за нарастания на гранулах пленки нефтепродуктов и в реальных условиях нефтесодержащие воды полидисперсны. Поэтому возникла необходимость получения уравнений для определения степени очистки воды от нефтепродуктов и толщины текущей пленки нефтепродуктов, которые позволили бы получить зависимость этих параметров от времени работы фильтра и тем самым оценить его параметры в динамике. С данной задачей справились авторы работы [37], где предлагается математическая модель разделения эмульсии в фильтре с коалесцирующей загрузкой и методика проектирования сепарационных установок.

На основе дифференциальных уравнений процесса коалесценции нефтесодержащих вод в тканевых фильтрах в работе [38] определены гидродинамические критерии и комплексы подобия, после постановки экспериментов получено уравнение гидродинамического подобия исследуемого процесса, которое позволяет моделировать и оптимизировать процесс очистки нефтесодержащих вод в тканевых фильтрах

Уравнение гидродинамического подобия процесса коалесценции нефтесодержащих вод в тканевых фильтрах

, (11)

где , (12) ,(13), (14), (15)

где -концентрация нефтепродуктов в воде после тканевого фильтра, как параметр оптимизации эффективности процесса коалесценции нефте-содержащих вод в тканевом фильтре, Р – давление, нефтеводяной эмульсии перед тканевым фильтром; ρ – плотность эмульсии; ∆Р – разность плотностей воды и нефти; – кинематическая вязкость эмульсии;–поверхностное натяжение на границе нефть–вода ; а – размер ячейки фильтрующей ткани; – диаметр нити фильтрующей ткани; – число слоев фильтрующей ткани; – концентрация исходной нефтеводяной эмульсии.

Комплекс Vi (14) представляет собой отношение адгезионных сил, способствующих процессу коалесценции на поверхности коалесцирующей ткани к силам внутреннего трения, оказывающим сопротивление движению нефтеводяной эмульсии через фильтрующую ткань, и силам гидродинамического увлечения капли потоком эмульсии, что так же способствуют процессу коалесценции.

Проанализировав уравнения (11) можно сделать вывод, что сила адгезии капелек нефти к фильтрующей ткани прямопропорциональна поверхностному натяжению на границе нефть-вода, а также зависит от параметров самой ткани и увеличивается при уменьшении размера ячеек и увеличении диаметра нити и числа слоев фильтрующей ткани, которые определяют ее толщину. [38]

Комплекс Se (15) характеризует свободное движение частиц нефти вследствие разности плотностей воды и нефти и представляет собой отношение адгезионных сил к подъемной силе, действующей на капельки нефти, находящиеся в объеме ячейки фильтрующей ткани.

В работе [39] приведены соотношения для критического диаметра капель эмульсии и длины трубопровода в струйном аппарате, необходимой для коалесценции капель эмульсии: