
- •1.Общие сведения о нефтегазовых операциях.
- •2. Способы бурения скважин.
- •3. Классификация скважин
- •1. Назначение и состав бурильной колонны.
- •2. Цели и способы бурения наклонно-направленных и горизонтальных скважин
- •3. Кустовые размещение скважин.
- •4.Многозабойные и многоярусные скважины.
- •1. Горные породы, слагающие разрез нефтяных и газовых месторождений.
- •2.Механические свойства горных пород.
- •3.Классификация породоразрушающих инструментов.
- •1. Долото для бурения сплошным забоем и с отбором керна
- •Породоразрушающий инструмент для отбора керна
- •2. Снаряды для колонкового бурения.
- •3. Буровые долота специального назначения.
- •1. Буровые установки для глубокого бурения на нефть и газ, основные характеристики и классификация.
- •2. Приводы буровых установок.
- •1. Оборудование для вращательного бурения и спускоподъемных операций.
- •Параметры и комплектность циркуляционных систем
- •3. Противовыбросовое оборудование.
- •1. Особенности разработки морских месторождений нефти и газа.
- •2. Инженерно-геологические изыскания.
- •3. Искусственные острова.
- •1. Функций бурового раствора.
- •2. Требования к буровым растворам.
- •3. Типы и рецептуры буровых растворов.
- •1. Функция и режимы промывки скважин.
- •2. Требования к режиму промывки скважин.
- •3. Расчет режимов промывки скважин.
- •1. Система подготовки бурового раствора.
- •2. Регулирование содержания и состава твердой фазы в буровом растворе.
- •3. Средства контроля и управления процессом промывки скважин.
- •1. Понятие о режимах бурения его параметрах и показателях работ долот.
- •2. Влияния параметров режима бурения на механическую скорость проходка нового долота.
- •1. Влияния параметров режима бурения на износ долота и показатели его работы. Х
- •2. Специфические особенности режимов вращательного бурения. Х
- •3. Рациональная отработка долот.
- •1. Воздействие промывочной жидкости на продуктивный пласт.
- •2. Способы первичного вскрытия продуктивных пластов. Х
- •3. Технология опробования перспективных горизонтов.
- •2. Цели и способы крепления скважин.
- •3.Принципы проектирования конструкции скважины.
- •1. Обсадные трубы и их соединения. Условия работы обсадной колонны в скважине.
- •2. Принципы расчета обсадных колонн.
- •3 Задача и способы цементирования скважин.
- •1. Подготовка скважин к освоению.
- •2. Вторичное вскрытие продуктивного пласта перфорацией.
- •3. Виды перфорации и их эффективность.
- •1. Классификация осложнений.
- •2. Поглощение промывочной жидкости и тампонажного раствора.
- •1. Причины, виды аварий и меры по их предупреждению.
- •2 Ловильный инструмент и работа с ним.
- •1. Информационное обеспечение процесса бурения с применением компьютерной техники и спутниковой связи.
- •1.Приборы и аппаратура для контроля параметров режима бурения.
- •1. Телеметрические системы контроля забойных параметров.
- •1. Физические и тепловые свойства горных пород.
- •Тепловые свойства горных пород
- •Коэффициент линейного расширения пород уменьшается с ростом плотности минералов.
- •2. Состав и физические свойства природных газов и нефти.
- •1. Фазовое состояние углеводородных систем. Х
- •Фазовые переходы в нефти, воде и газе
- •2. Пластовые воды и их физические свойства.
- •3. Молекулярно-поверхностные свойства системы «нефть-газ вода порода».
- •Источники пластовой энергии
- •Силы, действующие в залежи
- •Поверхностные явления при фильтрации пластовых жидкостей и причины нарушения закона дарси
- •Общая схема вытеснения из пласта нефти водой и газом
- •Нефтеотдача пластов при различных условиях дренирования залежи
- •Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •1. Породы коллекторы, их фильтрационные свойства
- •Линейная фильтрация нефти и газа в пористой среде
- •1.. Нефте-, газо-, водонасыщенность коллекторов.
- •2. Пластовые нефти и газы.
- •1. Газоконденсаты и газогидраты.
- •1. Цели искусственного воздействия на пласт.
- •2. Методы воздействия на пласт с целью интенсификации добычи нефти.
- •1. Классификация способов воздействия на призабойную зону скважин.
- •С карбонатом:
- •Физико-химические методы воздействия на призабойную зону пласта
- •Тепловые методы воздействия на пласт
- •Механические методы воздействия на пласт
- •1. Стадии разработки месторождения.
- •2. Способы эксплуатации скважин.
- •1. Фонтанный способ эксплуатации
- •2. Условия фонтанирования и возможные методы его продления.
- •3. Погружные электроцентробежные насосные установки и их классификация
- •1. Фонтанная арматура.
- •2. Запорные устройства фонтанной арматуры.
- •1. Манифольд фонтанных скважин.
- •2. Состав оборудования при газлифтной эксплуатации скважин.
- •2. Станки качалки.
- •2. Учет продукции скважины
- •1. Промысловые трубопроводы.
- •2. Сепарация нефти.
- •1. Подготовка нефти на месторождениях.
- •2. Нефтяные резервуары.
- •1.Исследование скважин и обоснование технологического режима эксплуатации.
- •1. Сбор и подготовка газа на промысле
- •1. Сезонная и суточная неравномерность потребления газа.
- •2. Цели и преимущества подземного хранения газа.
- •2. Хранение газа в истощенных или частично выработанных газовых и газоконденсатных месторождениях.
- •1. Подземное хранение газа в водоносных структурах.
2. Цели и преимущества подземного хранения газа.
Подземные газохранилища
Подземным газохранилищем (ПХГ) называется хранилище газа, созданное в горных породах.
Первое в мире ПХГ было сооружено на базе истощенного газового месторождения в провинции Онтарио (Канада) в 1915 г. В нашей стране первое подземное газохранилище - Башкатовское ПХГ на западе Оренбургской области - было введено в эксплуатацию в 1958 г.
Рис. 16.3. Цилиндрические газгольдеры высокого давления:а) горизонтальный; 6) вертикальный.
Различают два типа ПХГ: в искусственных выработках и в пористых пластах. Первый тип хранилищ получил ограниченное распространение. Так, в США по состоянию на 1.09.94 г. на них приходилось лишь 6 % из 371 ПХГ: 1 - в переоборудованной угольной шахте и 21 - в отложениях каменной соли. Остальные 349 ПХГ относятся к хранилищам второго типа: из них 305 размешены в отработанных нефтяных и газовых месторождениях, а 44 - в водоносных пластах.
Широкое использование хранилищ в истощенных нефтегазовых месторождениях объясняется минимальными дополнительными затратами на оборудование ПХГ, поскольку саму ловушку с проницаемым пластом природа уже «изготовила».
Принципиальная схема подземного газохранилища приведена на рис. 16.4.
Газ из магистрального газопровода 1 по газопроводу-отводу 2 поступает на компрессорную станцию 4, предварительно пройдя очистку в пылеуловителях 3. Сжатый и нагревшийся при компримировании газ очищается от масла в сепараторах 5, охлаждается в градирне (или АВО) 6 и через маслоотделители 7 поступает на газораспределительный пункт (ГРП) 8. На ГРП осуществляется распределение газа по скважинам.
Давление закачиваемого в подземное хранилище газа достигает 15 МПа. Для закачки, как правило, используются газомотокопрессоры.
При отборе газа из хранилища его дросселируют на ГРП 8, производят очистку и осушку газа в аппаратах 9,10, а затем после замера количества расходомером 11 возвращают в магистральный газопровод 1. Если давление газа в подземном хранилище недостаточно высоко, его предварительно компримируют и охлаждают (на рис. 16.4 не показано).
При отборе газа из хранилища его дросселируют на ГРП 8, производят очистку и осушку газа в аппаратах 9,10, а затем после замера количества расходомером 11 возвращают в магистральный газопровод 1. Если давление газа в подземном хранилище недостаточно высоко, его предварительно компримируют и охлаждают (на рис. 16.4 не показано).
Очистка газа от пыли, окалины и частиц масла перед его закачкой в хранилище имеет очень большое значение, т.к. в противном случае засоряется призабойная зона и уменьшается приемистость скважин.
Оптимальная глубина, на которой создаются подземные газохранилища, составляет от 500 до 800 м. Это связано с тем, что с увеличением глубины возрастают затраты на обустройство скважин.С другой стороны, глубина не должна быть слишком малой, т.к. в хранилище создаются достаточно высокие давления.
Подземное хранилище заполняют газом несколько лет, закачивая каждый сезон несколько больший объем газа, чем тот, который отбирается.
Рис. 16.4. Принципиальная схема наземных сооружений ПХГ:
I - магистральный газопровод; 2 - газопровод-отвод; 3,9 - пылеуловители; 4 - компрессорная станция; 5 - сепаратор;
6 - холодильник (градирня); 7 - маслоотделитель; 8 - газораспределительный пункт; 10 - установка осушки газа;
II – расходомер
Общий объем газа в хранилище складывается из двух составляющих: активной и буферной. Буферный объем обеспечивает минимально необходимое заполнение хранилища, а активный – это тот объем газа, которым можно оперировать.
По состоянию на 1.09.94 г. общий объем природного газа в ПХГ США превысил 206 млрд. м3, из которых 86,9 млрд. м3 (42,3 %) составляет активный газ и 119,1 млрд. м3 - буферный. Общий максимальный темп закачки в ПХГ США составляет 865 млн. м3/сут, а отбора - 1900 млн. м3/сут.
В России в 1995 г. объем активного газа в ПХГ составлял около 45 млрд. м3. По прогнозам к 2000 г. он достигает 50...55 млрд. м3, а к 2010 г. - 70...75 млрд. м3.
Контрольные вопросы:
1. Принцип работы газгольдера?
2. Когда было создано первое в мире подземное зранилеще?
3. Для чего используются газомотокопрессоры?
Литература
1. Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. — М.: Недра,1988. — 501 с.
2. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для
вузов. — М: ООО «Недра-Бизнесцентр», 2000. — 670 с.
3. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных
и газовых скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2000. —679 с.
4. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых
скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2001. — 679 с.
5. Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. — М.:Недра,
1999. — 375 с
Лекция 44
Тема: Подземное хранение газа.
План:1 Технологическая схема отбора и закачки газа в хранилище.
2. Хранение газа в истощенных или частично выработанных газовых и газоконденсатных
месторождениях.
1 Технологическая схема отбора и закачки газа в хранилище.
Системы промыслового сбора природного газа
Существующие системы сбора газа классифицируются:
- по степени централизации технологических объектов подготовки газа;
- по конфигурации трубопроводных коммуникаций;
- по рабочему давлению.
По степени централизации технологических объектов подготовки газа различают индивидуальные, групповые и централизованные системы сбора.
Рис. 7.37. Принципиальная схема установки комплексной подготовки газа
1,9,11,12 - насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор; 6 - стабилизационная колонна; 7 - конденсатор-холдодильник; 8 - емкость орошения; 10- печь
I - холодная "сырая" нефть; II - подогретая "сырая" нефть; Ш - дренажная вода; IV - частично обезвоженная нефть; V - пресная вода; VI - обезвоженная и обессоленная нефть; VII - пары легких углеводородов; VIII – вескойленсиронавшиеся пары; IX - широкая фракция (сконденсировавшиеся пары); X - стабильная нефть
При индивидуальной системе сбора (рис. 7.38 а) каждая Скважина имеет свой комплекс сооружений для подготовки газа (УПГ), после которого газ поступает и сборный коллектор и далее на центральный сборный пункт (ЦСП). Данная система применяется в начальный период разработки месторождения, а также на промыслах с большим удалением скважин друг от друга. Недостатками индивидуальной системы являются: 1) рассредоточенность оборудования и аппаратов но всему промыслу, а, следовательно, сложности организации постоянного и высококвалифицированного обслуживания, автоматизации и контроля за работой этих объектов; 2) увеличение суммарных потерь газа но промыслу за счет наличия большого числа технологических объектов и т.д.
При групповой системе сбора (рис. 7.38 б) весь комплекс по подготовке газа сосредоточен па групповом сборном пункте (ГСП), обслуживающем несколько близко расположенных скважин (до 16 и более). Групповые сборные пункты подключаются к промысловому сборному коллектору, по которому газ поступает на центральный сборный пункт и далее потребителю.
Групповые системы сбора получили широкое распространение, так как их внедрение позволяет увеличить мощность и коэффициент загрузки токологических аппаратов, уменьшить число объектов контроля, обслуживания и автоматизации, а в итоге снизить затраты па обустройство месторождения.
При централизованной системе сбора (рис. 7.38 в) газ от всех скважин по индивидуальным линиям или сборному коллектору поступает к единому центральному сборному пункту, где осуществляется весь комплекс технологических процессов подготовки газа и откуда он направляется потребителям.
Применение централизованных систем сбора позволяет осуществить еще большую концентрацию технологического оборудования, за счет применения более высокопроизводительных аппаратов уменьшить мсталлозатраты и капитальные вложения в подготовку газа.
В каждом конкретном случае выбор системы сбора газа обосновывается технико-экономическим расчетом.