Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная Алгебра от 2 октября 2013.doc
Скачиваний:
767
Добавлен:
10.02.2015
Размер:
3.44 Mб
Скачать

Закон инерции квадратичных форм

Установлено, что число отличных от нуля канонических коэффициентов квадратичной формы равно ее рангу и не зависит от выбора невырожденного преобразования, с помощью которого форма A(xx) приводится к каноническому виду. На самом деле не меняется и число положительных и отрицательных коэффициентов.

Теорема 11.3 (закон инерции квадратичных форм). Число положительных и отрицательных коэффициентов в нормальном виде квадратичной формы не зависит от способа приведения квадратичной формы к нормальному виду.

Пусть квадратичная форма f ранга r от n неизвестных x1, x2, …, xn двумя способами приведена к нормальному виду, то есть

f = + … + – – … – ,

f = + … + – – … – . Можно доказать, что k = l.

Определение 11.14. Число положительных квадратов в нормальной форме, к которой приводится действительная квадратичная форма, называется положительным индексом инерции этой формы; число отрицательных квадратов – отрицательным индексом инерции, а их сумма – индексом инерции квадратичной формы или сигнатурой формы f.

Если p – положительный индекс инерции; q – отрицательный индекс инерции; k = r = p + q – индекс инерции.

Классификация квадратичных форм

Пусть у квадратичной формы A(x, x) индекс инерции равен k, положительный индекс инерции равен p , отрицательный индекс инерции равен q, тогда k = p + q.

Было доказано, что в любом каноническом базисе f = {f1, f2, …, fn} эта квадратичная форма A(x, x) может быть приведена к нормальному виду A(x, x) = + … + – – … – , где 1, 2, …, n координаты вектора x в базисе {f}.

Необходимое и достаточное условие знакоопределенности квадратичной формы

Утверждение 11.1. Для того чтобы квадратичная форма A(x, x), заданная в n-мерном векторном пространстве V, была знакоопределенной, необходимо и достаточно, чтобы либо положительный индекс инерции p, либо отрицательный индекс инерции q, был равен размерности n пространства V.

При этом если p = n, то форма положительно определена (то есть для любого x ≠ 0 A(x, x) > 0).

Если же q = n, то форма отрицательно определена (то есть для любого x ≠ 0 A(x, x) < 0).

Необходимое и достаточное условие знакопеременности квадратичной формы

Утверждение 11.2. Для того чтобы квадратичная форма A(x, x), заданная в n-мерном векторном пространстве V, была знакопеременной (то есть существуют такие x, y что A(x, x) > 0 и A(y, y) < 0) необходимо и достаточно, чтобы как положительный, так и отрицательный индексы инерции этой формы были отличны от нуля.

Необходимое и достаточное условие квазизнакопеременности квадратичной формы

Утверждение 11.3. Для того чтобы квадратичная форма A(x, x), заданная в n-мерном векторном пространстве V, была квазизнакопеременной (то есть для любого вектора x или A(x, x) ≥ 0 или A(x, x) ≤ 0 и найдется такой ненулевой вектор x, что A(x, x) = 0) необходимо и достаточно, чтобы выполнялось одно из двух соотношений: p < n, q = 0 или p = 0, q < n.

Замечание. Для того чтобы применять эти признаки, квадратичную форму надо привести к каноническому виду. В критерии знакоопределенности Сильвестра15 этого не требуется.