Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
nonlin / lect9.doc
Скачиваний:
78
Добавлен:
10.02.2015
Размер:
751.62 Кб
Скачать

6.4. Параметрическое усиление колебаний

Было выяснено, что при определенных условиях параметрические элементы способны играть роль активных элементов в цепи. Это позволяет на их основе создаватьпараметрические усилители, которые имеют низкий уровень собственных шумов, так как в них нет шума тока за счет дробового эффекта. Параметрические усилители в основном применяют в СВЧ-диапазоне как входные каскады радиоприемных устройств с высокой чувствительностью.

В 50-х годах 20 века были сконструированы первые полупроводниковые параметрические диоды (варакторы). Параметрически управляемые нелинейные емкости и индуктивности изучались в п. 2.3.

Одноконтурный параметрический усилитель. Принципиальная схема такого усилителя показана на рис. 6.8, а, а эквивалентная - на рис. 6.8, б.

Рис. 6.8

Зависимость параметрической емкости от гармонического сигнала накачки на частоте :

(6.21)

Проводимость вносится в эквивалентную схему усилителя параметрическим изменением емкости сигналом накачки. Входной сигнал – генератор гармонического тока с амплитудой, частотойи внутренней проводимостью.,- проводимость нагрузки. Для реализации параметрического усиления с максимальным выделением мощности на проводимости нагрузки надо выполнить условия:

  1. вносимая проводимость должна быть чисто активной и отрицательной; в соответствии с результатами п. 6.2 (см. (6.27)) для этого надо выбрать частоту накачкии начальную фазу колебаний генератора накачки так, чтобы обеспечитьв (6.27):

(6.27)

где ;

  1. Постоянная часть емкости и индуктивностьобразует параллельный колебательный контур, настроенный на частоту входного сигнала, тогда проводимость этого контура равна нулю;

  2. В нагрузке с проводимостью выделяется максимальная мощность, если она согласована с генератором сигнала, к которому она подсоединена; эквивалентная проводимость этого генератора равна, условие согласования имеет вид:, и тогда

(6.29)

так как амплитуда напряжения на зажимах генератора равна , а в нагрузке выделяется активная мощность.

Если сигнала накачки нет, то в нагрузке выделяется мощность

(6.30)

причем , так как.

Номинальным коэффициентом усиления мощности параметрического усилителя называется величина

(6.31)

например, если См,См, то.

Критическое значение вносимой отрицательной проводимости, когда параметрический усилитель теряет устойчивость и самовозбуждается,

(6.32)

В условиях (6.32) отрицательная проводимость варактора полностью компенсирует сумму проводимостей входного генератора и нагрузки. Параметрический усилитель работает устойчиво, если , если же, то усилитель самовозбуждается и превращается в параметрический автогенератор.

Пусть фазовые соотношения колебаний входного сигнала и накачки оптимальны так, что в (6.27) . Тогда из (6.27) и (6.32) находим критическую глубину модуляции параметрической емкости сигналом накачки:

(6.33)

Рассмотрим параметрическое усиление в режиме расстройки. Условие синхронизма:, точно выполнить практически невозможно. Пусть- расстройка частоты входного сигнала, то есть. Если, то усилитель работает васинхронном режиме. Тогда величина фазового сдвига, определяющая вносимую в контур проводимость, зависит от времени:. Вносимое сопротивление изменяется как

(6.34)

периодически меняя знак на противоположный со временем.

В результате наблюдаются глубокие изменения уровня выходного сигнала, подобные биениям. Данный недостаток препятствует применению одноконтурных усилителей на практике.

Двухконтурный параметрический усилитель. От указанного недостатка свободендвухконтурный параметрический усилитель, схема которого показана на рис. 6.9.

Рис. 6.9

Усилитель состоит из двух колебательных контуров, один из которых настроен на частоту . Этот контур называетсясигнальным. Другой контур, называемыйхолостым,настроен нахолостую частоту . Связь между контурами достигается посредством параметрической емкости варактора. Сигнал накачки изменяет параметрическую емкость по гармоническому закону на частоте накачки:

(6.35)

Оба колебательных контура – сигнальный и холостой – высокодобротные. Поэтому в стационарном режиме напряжения на этих контурах – приближенно гармонические:

(6.36)

Согласно рис. 6.9, напряжение на варакторе . Тогда ток через варактор

(6.37)

Так как , то спектр сигнала (6.37) содержит составляющие на частоте сигнала, на холостой частоте, а также на комбинационных частотахи. Варактор и холостой контур, подсоединенные последовательно к сигнальному контуру, можно заменить на эквивалентной схеме проводимостью, вносимой в сигнальный контур. Чтобы найти эту проводимость, надо выделить в (6.37) составляющую тока на частоте сигнала:

(6.38)

В (6.38) первое слагаемое сдвинуто относительно напряжения по фазе на. Поэтому за счет него нет внесения активной проводимости в сигнальный контур. Второе слагаемое на частоте сигналапропорционально амплитуденапряжения на холостом контуре. Найдем величину. Для этого выделим в токе варактора (6.37) полезную составляющую на холостой частоте, пропорциональную:

(6.39)

Пусть - резонансное сопротивление холостого контура. Напряжение на нем, вызванное колебаниями на частоте,

(6.40)

откуда, сопоставляя со вторым выражением в (6.36), получаем:

(6.41)

Подставим выражения (6.41) во второе слагаемое в (6.38). Получим выражение полезной составляющей тока на частоте сигнала за счет влияния варактора и холостого контура:

(6.42)

Проводимость, вносимая в сигнальный контур последовательным соединением варактора и холостого контура,

(6.43)

оказывается активной и отрицательной.

Далее можно рассчитать номинальный коэффициент усиления двухконтурного параметрического усилителя по формуле (6.31). Анализ устойчивости работы двухконтурного усилителя проводят так же, как и для одноконтурного усилителя. Сопоставим друг с другом выражение

(6.27)

для одноконтурного усилителя и (6.43) – для двухконтурного усилителя, получим, что в двухконтурном усилителе вносимая проводимость, в отличие от одноконтурного усилителя, не зависит от начальных фаз входного сигнала и накачки. Кроме того, двухконтурный усилитель, в отличие от одноконтурного усилителя, некритичен к выбору частот сигнала и накачки. Вносимая проводимость будет отрицательна, если.

Вывод. Двухконтурный усилитель способен работать при произвольном соотношении частот сигнала и накачки независимо от начальных фаз этих колебаний. Этот эффект обусловлен использованием вспомогательных колебаний, возникающих на одной из комбинационных частот.

Баланс мощностей в многоконтурных параметрических системах. Нечувствительность к фазовым соотношениям позволяет изучать: многоконтурные параметрические системы на основе энергетических соотношений. Эквивалентная схема двухконтурного параметрического усилителя показана на рис. 6.10.

Рис. 6.10

Здесь параллельно нелинейной емкости включены три двухполюсника. Два из них содержат источники сигнала и накачки, а третий образует холостой контур, настроенный на комбинационную частоту, гдеи- целые числа. Каждый из трех двухполюсников содержит узкополосный фильтр, настроенный на частоты,и, соответственно. Упрощая задачу, считаем, что цепи сигнала и накачки не имеют омических потерь. Если одного из источников (сигнала или накачки) нет, то составляющие на комбинационных частотах в токе, протекающем через нелинейный конденсатор, отсутствуют. Ток холостого контура равен нулю. Система ведет себя как реактивная, то есть в среднем не потребляет мощности источника.

Если есть оба источника, то появляются составляющая тока на комбинационной частоте . Этот ток может замыкаться через холостой контур. Нагрузка холостого контура в среднем потребляет мощность. В цепях сигнала и накачки появляются активные части сопротивлений. Их значения и знаки определяются перераспределением мощностей между источниками. Применим к автономной (замкнутой) системе рис. 6.10 закон сохранения энергии: средние (по периодам соответствующих колебаний) мощности сигнала, накачки и комбинационных колебаний связаны как

(6.44)

Средняя мощность выражается через энергию, выделяемую за период:

где - частота.

Тогда

где ,и, или

(6.45)

Выполнение (6.45) независимо от выбора частот ивозможно лишь тогда, когда

(6.47)

В (6.47) перейдем от энергий к мощностям, получим уравнения Мэнли-Роу:

(6.48)

Уравнения Мэнли-Роу позволяют изучать закономерности преобразования мощностей в многоконтурных параметрических системах. Изучим два характерных случая.

Параметрическое усиление с преобразованием частоты “вверх”. Пусть в (6.48) . Имеем:

(6.49)

Мощность, выделяемая в нагрузке, - положительная, а мощность, отдаваемая в цепь генератором, - отрицательная. Так как в (6.49) , тои(см. рис. 6.11).

Рис. 6.11

Вывод. Если холостой контур параметрического усилителя настроен на комбинационную частоту, то оба источника – сигнала и накачки, отдают мощность холостому контуру, где она потребляется в нагрузке. Так как, то коэффициент усиления мощности

(6.50)

Достоинство изучаемой системы – такая устойчивость, что она не может возбудиться ни при каких мощностях сигнала и накачки. Недостаток – частота выходного сигнала выше частоты входного сигнала. В СВЧ диапазоне это приводит к трудностям при обработке сигнала.

Регенеративное параметрическое усиление. Пусть,. Тогда частота холостого контура, и. Уравнения Мэнли-Роу имеют вид:

(6.51)

Из первого уравнения в (6.51) следует, что и. Значит, некоторая часть мощности, отбираемая от генератора накачки, поступает в сигнальный контур. То есть, в системе имеет месторегенерация на частоте сигнала. Выходную мощность можно извлечь как из сигнального, так и из холостого контура (см. рис. 6.12)..

Рис. 6.12

Из уравнений (6.51) нельзя определить коэффициент усиления системы. Так как мощность содержит в себе как часть, потребляемую от входного генератора, так и часть, возникающую за счет эффекта регенерации. При определенных условиях в таких усилителях имеется склонность к самовозбуждению. Тогда в сигнальном контуре выделяется мощность даже в отсутствие полезного сигнала на входе.

Соседние файлы в папке nonlin