Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

sbornik zadach po neorganicheskoj chimii

.pdf
Скачиваний:
3
Добавлен:
10.02.2015
Размер:
1.18 Mб
Скачать

А.Н.Богатиков, В.А.Красицкий, К.Н.Лапко, А.А.Рагойша, И.Е.Шиманович

Сборник задач, вопросов и упражнений по общей неорганической химии.

Учебное пособие

Сборник задач, вопросов и упражнений по общей неорганической химии [Электронный ресур]: Учебное пособие / А.Н.Богатиков, В.А.Красицкий, К.Н.Лапко, А.А.Рагойша, И.Е.Шиманович. — Электрон. текст. дан. (1,2 Мб). — Мн.: Научно-методический центр “Электронная книга БГУ”, 2003. — Режим доступа: http://anubis.bsu.by/publications/elresources/Chemistry/bogatikov.pdf . —

Электрон. версия печ. публикации, 2002. — PDF формат, версия 1.4 . — Систем.

требования: Adobe Acrobat 5.0 и выше.

МИНСК

«Электронная книга БГУ»

2003

© А.Н.Богатиков, В.А.Красицкий, К.Н.Лапко, А.А.Рагойша, И.Е.Шиманович, 2003.

© Научно-методический центр «Электронная книга БГУ», 2003

www.elbook.bsu.by

elbook@bsu.by

M>D

;;D y

;

: \ l h j u

: G ;h]Zlbdh\ < : DjZkbpdbc D G EZidh : : JZ]hcrZ B ? RbfZgh\bq

J _ p _ g a _ g l u dZn_^jZ obfbb ;_ehjmkkdh]h ]hkm^Zjkl\_ggh]h i_^Z]h]bq_kdh]h mgb\_jkbl_lZ bf F LZgdZaZ\ dZn_^jhc ^hp_gl N N EZo\bq); dZg^b^Zl obfbq_kdbo gZmd ^hp_gl dZn_^ju h[s_c obfbb ;_ehjmkkdh]h ]hkm^Zjkl\_ggh]h f_^bpbgkdh]h mgb\_jkbl_lZ

K < LdZq_\

;h]Zlbdh\ : G

; K[hjgbd aZ^Zq \hijhkh\ b mijZ`g_gbc ih h[s_c g_hj]Zgb q_kdhc obfbb Mq_[ ihkh[b_ : G ;h]Zlbdh\ < : DjZkbpdbc

D G EZidh b ^j Fg ;=M k

ISBN 985-445-803-2.

Mq_[gh_ ihkh[b_ khklZ\e_gh \ khhl\_lkl\bb k ijh]jZffhc dmjkZ h[s_c b g_hj]Zgbq_kdhc obfbb ^ey klm^_glh\ nZdmevl_lZ nmg^Zf_glZevghc b g_ ljZ^bpbhgghc f_^bpbgu b [bheh]bq_kdh]h nZdmevl_lZ Ihkh[b_ \dexqZ_l \hijhku ^ey kZfhklhyl_evghc jZ[hlu klm^_glh\ mijZ`g_gby b aZ^Zqb ih ^\Z^pZlv h^ghc l_f_

M>D

;;D y

 

‹Dhee_dlb\ Z\lhjh\

ISBN 985-445-803-2

‹;=M

I H;S:Y OBFBY

= E : < : I

:LHFGH-FHE?DMEYJGH? MQ?GB? HKGH<GU? IHGYLBY B A:DHGU OBFBB

D \Z`g_crbf ihgylbyf obfbb hlghkylky obfbq_kdbc we_f_gl Zlhf fhe_dmeZ bhg \_s_kl\h obfbq_kdh_ dhebq_kl\h \_s_kl\Z fhev

Obfbq_kdbc we_f_gl hij_^_e_gguc \b^ Zlhfh\ oZjZdl_jb amxsbcky h^bgZdh\uf aZjy^hf Zlhfguo y^_j GZijbf_j \k_ kms_kl \mxsb_ \h <k_e_gghc Zlhfu k aZjy^hf y^jZ h[jZamxl obfbq_kdbc we_f_gl \h^hjh^ G \k_ Zlhfu k aZjy^hf y^jZ we_f_gl mjZg (U < gZklhys__ \j_fy ba\_klgh obfbq_kdbo we_f_glh\

:lhf we_dljhg_cljZevgZy obfbq_kdb g_^_ebfZy qZklbpZ kh klhysZy ba iheh`bl_evgh aZjy`_ggh]h y^jZ b hljbpZl_evgh aZjy `_gguo we_dljhgh\ :lhfu kh_^bgyxlky ^jm] k ^jm]hf obfbq_kdhc k\yavx h[jZamy fhe_dmeu beb djbklZeeu \_s_kl\ JZaf_ju b fZkku Zlhfh\ qj_a\uqZcgh fZeu GZijbf_j fZkku Zlhfh\ m]e_jh^Z b db kehjh^Z jZ\gu khhl\_lkl\_ggh–26 d] b–26 d] < obfbb gZjy^m k Z[khexlgufb agZq_gbyfb fZkk Zlhfh\ rbjhdh bkihevamxlky b agZq_gby hlghkbl_evguo Zlhfguo fZkk Hgb h[hagZqZxlky :r (r – i_j\Zy [md\Z keh\Z©relativeªqlh agZqbl©hlghkbl_evgucª

Hlghkbl_evgZy ZlhfgZy fZkkZ Ar nbabq_kdZy \_ebqbgZ jZ\ gZy hlghr_gbx kj_^g_c fZkku Zlhfh\ ^Zggh]h we_f_glZ d qZk lb fZkku gmdeb^Z 12K.

?keb fZkkZ ZlhfZ 12K jZ\gZ–26 d] lh

ma (12 C) = 1,995 1026 d] =1,663 1027 d]. 12 12

Wlm \_ebqbgm gZau\Zxl Zlhfghc _^bgbp_c fZkku b h[hagZqZxl kbf\hehf ©uª hl Zg]ebckdh]h ©unitª qlh agZqbl ©_^bgbpZª LZdbf h[jZahf

1u = 1,663·10–27 d]

GZijbf_j hlghkbl_evgZy ZlhfgZy fZkkZ dbkehjh^Z jZ\gZ

Ar(O) =

ma

(O)

=

2,658 1026 d]

=16 .

1u

1,663 1027 d]

 

 

 

 

 

 

 

3

 

Fhe_dmeZ f_evqZcrZy kihkh[gZy d kZfhklhyl_evghfm kms_ kl\h\Zgbx qZklbpZ khojZgyxsZy \k_ obfbq_kdb_ k\hckl\Z ^Zggh]h \_s_kl\Z Fhe_dmeu fh]ml khklhylv dZd ba Zlhfh\ h^gh]h we_f_glZ lZd b ba Zlhfh\ jZaguo we_f_glh\ Fhe_dmeu y\eyxlky ghkbl_eyfb khklZ\Z b obfbq_kdbo k\hckl\ h[jZah\Zgguo bfb \_s_kl\ JZaf_ju b

fZkku fhe_dme lZd`_ qj_a\uqZcgh fZeu GZijbf_j fZkkZ h^ghc fh e_dmeu \h^u jZ\gZ –26 d] Ijb ijh\_^_gbb jZkq_lh\ \ obfbb

lZd`_ bkihevamxlky hlghkbl_evgu_ fhe_dmeyjgu_ fZkku h[hagZ qZxsb_ky kbf\hehf Mr.

Hlghkbl_evgZy fhe_dmeyjgZy fZkkZ Mr nbabq_kdZy \_ebqbgZ jZ\gZy hlghr_gbx kj_^g_c fZkku fhe_dmeu \_s_kl\Z d 1/12 qZklb fZkku gmdeb^Z 12K

GZijbf_j hlghkbl_evgZy fhe_dmeyjgZy fZkkZ \h^u jZ\gZ

 

m

H2O

=

 

2,99 1026 d]

= 18 .

Mr(H2O) =

fhe_dmeu

 

 

 

1u

 

1,6631027 d]

 

 

 

 

AgZq_gb_ Mr \_s_kl\Z \k_]^Z jZ\gh kmff_ agZq_gbc Ar h[jZamx sbo _]h we_f_glh\ k mq_lhf qbkeZ bo Zlhfh\ \ fhe_dme_

Bhg h^gh- beb fgh]hZlhfgZy qZklbpZ h[eZ^ZxsZy we_dljbq_

kdbf aZjy^hf

H^ghZlhfgu_ bhgu KZ2+ Kl, Na+, S2–; fgh]hZlhfgu_ bhgu1+4+, SO42– KH3COO.

Bhgu kh_^bgyxlky \ khhl\_lkl\bb k bo aZjy^Zfb h[jZamy fhe_

dmeu beb djbklZeeu

<_s_kl\h mklhcqb\Zy kbkl_fZ qZklbp Zlhfh\ bhgh\ beb fhe_ dme h[eZ^ZxsZy hij_^_e_ggufb nbabq_kdbfb b obfbq_kdbfb k\hc kl\Zfb

< gZklhys__ \j_fy ba\_klgh hdheh fbeebhgh\ \_s_kl\ <k_ hgb ^_eylky gZ ]jmiiu \_s_kl\Z fhe_dmeyjgh]h b g_fhe_dmeyjgh ]h kljh_gby

D \_s_kl\Zf fhe_dmeyjgh]h kljh_gby hlghkylky \_s_kl\Z kh klhysb_ ba fhe_dme DZd ijZ\beh wlb \_s_kl\Z h[eZ^Zxl gbadbfb l_fi_jZlmjZfb ieZ\e_gby ]Zau `b^dhklb b e_]dhieZ\db_ l\_j^u_ \_s_kl\Z Obfbq_kdb_ nhjfmeu lZdbo \_s_kl\ gZau\Zxlky fhe_dm eyjgufb.

D \_s_kl\Zf g_fhe_dmeyjgh]h kljh_gby hlghkylky \_s_kl\Z \ maeZo djbklZeebq_kdbo j_r_lhd dhlhjuo gZoh^ylky Zlhfu beb bhgu Wlb \_s_kl\Z dZd ijZ\beh h[eZ^Zxl \ukhdbfb l_fi_jZlmjZfb ieZ\ e_gby b ijb dhfgZlghc l_fi_jZlmj_ \k_]^Z gZoh^ylky \ l\_j^hf Z]j_ ]Zlghf khklhygbb D lZdbf \_s_kl\Zf kh\_jr_ggh g_ijbf_gbfh ih

4

gylb_ ©fhe_dmeZª <f_klh g_]h bkihevam_lky ihgylb_ ©nhjfmevgZy _^bgbpZ \_s_kl\Zª Obfbq_kdb_ nhjfmeu \_s_kl\ g_fhe_dmeyjgh]h kljh_gby y\eyxlky ijhkl_crbfb beb wfibjbq_kdbfb nhjfmeZfb

NhjfmevgZy _^bgbpZ N? keh`gh]h \_s_kl\Z g_fhe_dmeyjgh]h kljh_gby mkeh\gZy g_ kihkh[gZy d kZfhklhyl_evghfm kms_kl\h\Z gbx ]jmiiZ Zlhfh\ beb bhgh\ khklZ\ dhlhjhc khhl\_lkl\m_l wf ibjbq_kdhc nhjfme_ ^Zggh]h \_s_kl\Z

?keb \_s_kl\h g_fhe_dmeyjgh]h kljh_gby khklhbl ba Zlhfh\ g_ kdhevdbo we_f_glh\ gZijbf_j SiO2 _]h nhjfmevghc _^bgbp_c y\ey _lky mkeh\gZy qZklbpZ khklhysZy ba -]h ZlhfZ Si b -o Zlhfh\ H HgZ y\ey_lky mkeh\ghc ihlhfm qlh \ djbklZee_ hdkb^Z dj_fgby IV g_l hl^_evguo fhe_dme SiO2 hg khklhbl ba fgh`_kl\Z Zlhfh\ dj_fgby b dbkehjh^Z Gh \_kv djbklZee fh`gh mkeh\gh jZa^_eblv gZ ]jmiiu Zlhfh\ \ dZ`^hc ba dhlhjuo [m^_l h^bg Zlhf Si b ^\Z ZlhfZ H LZdbf h[jZahf nhjfmevgZy _^bgbpZ hdkb^Z dj_fgby IV) – mkeh\gZy j_Zev gh g_ kms_kl\mxsZy qZklbpZ©SiO2».

?keb \_s_kl\h g_fhe_dmeyjgh]h kljh_gby h[jZam_l bhggmx djb klZeebq_kdmx j_r_ldm gZijbf_j NaCl _]h nhjfmevghc _^bgbp_c [m ^_l mkeh\gZy qZklbpZ khklhysZy ba h^gh]h bhgZ Na+ b h^gh]h bhgZ ClØ HgZ y\ey_lky mkeh\ghc ihlhfm qlh \ djbklZee_ oehjb^Z gZljby g_l fhe_dme NaCl l d hg khklhbl ba bhgh\ Gh \_kv wlhl djbklZee fh`gh mkeh\gh jZa^_eblv gZ ]jmiiu bhgh\ \ dZ`^hc ba dhlhjuo [m ^_l bhg Na+ b bhg ClØKe_^h\Zl_evgh nhjfmevghc _^bgbp_c oeh jb^Z gZljby y\ey_lky mkeh\gZy qZklbpZ khklhysZy ba -o bhgh\

D keh`guf \_s_kl\Zf g_fhe_dmeyjgh]h kljh_gby g_evay ijbf_ gylv ihgylb_©hlghkbl_evgZy fhe_dmeyjgZy fZkkZªIhkdhevdm kljmd lmjgufb _^bgbpZfb lZdbo \_s_kl\ y\eyxlky g_ fhe_dmeu Z mkeh\gu_ nhjfmevgu_ _^bgbpu d gbf ijbf_gbf l_jfbg ©hlghkbl_evgZy nhj fmevgZy fZkkZªHgZ h[hagZqZ_lky Mf,r(X).

Hlghkbl_evgZy nhjfmevgZy fZkkZ Mf,r(X) \_ebqbgZ jZ\gZy hlghr_gbx fZkku h^ghc nhjfmevghc _^bgbpu \_s_kl\Z O d

qZklb fZkku gmdeb^Z 12K.

AgZq_gb_ Mf,r jZ\gh kmff_ agZq_gbc Ar we_f_glh\ k mq_lhf qbkeZ bo Zlhfh\ \ nhjfmevghc _^bgbp_

<Z`g_crbfb dhebq_kl\_ggufb oZjZdl_jbklbdZfb ex[h]h \_s_

kl\Z y\eyxlky _]h obfbq_kdh_ dhebq_kl\h fZkkZ b h[t_f

Obfbq_kdh_ dhebq_kl\h \_s_kl\Z nbabq_kdZy \_ebqbgZ ijh ihjpbhgZevgZy qbkem kljmdlmjguo _^bgbp Zlhfh\ fhe_dme beb N?

kh^_j`Zsboky \ ^Zgghc ihjpbb \_s_kl\Z Obfbq_kdh_ dhebq_kl\h

5

\_s_kl\Z h[hagZqZ_lky kbf\hehf «n». ?^bgbp_c obfbq_kdh]h dhebq_ kl\Z \_s_kl\Z y\ey_lky fhev

Fhev lZdh_ obfbq_kdh_ dhebq_kl\h \_s_kl\Z \ dhlhjhf kh ^_j`blky Â23 _]h kljmdlmjguo _^bgbp l _ klhevdh kdhevdh kh^_j`blky Zlhfh\ \ m]e_jh^_ 12K fZkkhc d]

QbkehÂ23 gZau\Z_lky ihklhygghc :\h]Z^jh b h[hagZqZ_lky kbf\hehf N::

N: = 6,02·1023 fhev–1.

FZkkZ \_s_kl\Z \aylh]h \ dhebq_kl\_ fhev gZau\Z_lky fh eyjghc fZkkhc ^Zggh]h \_s_kl\Z HgZ h[hagZqZ_lky kbf\hehf F b \ujZ`Z_lky \ d] fhev beb ] fhev

FZkkZ \_s_kl\Z qbke_ggh jZ\gZ ijhba\_^_gbx _]h obfbq_kdh]h dhebq_kl\Z b fheyjghc fZkku

m(X) = n(X) · M(X)

H[t_f ]Zahh[jZagh]h \_s_kl\Z \aylh]h \ dhebq_kl\_ fhev gZ

au\Z_lky fheyjguf h[t_fhf \_s_kl\Z. Hg h[hagZqZ_lky kbf\hehf

Vf b \ujZ`Z_lky \ f3 fhev beb ^f3 fhev

H[t_f ]ZaZ ijb ^Zgghf ^Z\e_gbb b l_fi_jZlmj_ qbke_ggh jZ\_g ijhba\_^_gbx _]h obfbq_kdh]h dhebq_kl\Z b fheyjgh]h h[t_fZ ba f_j_ggh]h ijb l_o `_ mkeh\byo

V(X) = n(X) · Vf(X)

LZdbf h[jZahf obfbq_kdh_ dhebq_kl\h \_s_kl\Z qbkeh _]h kljmdlmjguo _^bgbp fZkkZ b h[t_f ^ey ]Zah\ k\yaZgu f_`^m kh[hc khhlghr_gb_f

n(X ) = m(X ) = V (X ) = N(X ) .

M (X ) Vm (X ) NA

D \Z`g_crbf aZdhgZf obfbb hlghkylky aZdhg khojZg_gby fZkku \_s_kl\Z aZdhg ihklhygkl\Z khklZ\Z \_s_kl\Z aZdhg obfbq_kdbo wd \b\Ze_glh\ b aZdhgu ]Zah\h]h khklhygby

AZdhg khojZg_gby fZkku \_s_kl\Z

FZkkZ \_s_kl\ \klmib\rbo \ obfbq_kdmx j_Zdpbx qbke_ggh jZ\gZ fZkk_ \_s_kl\ h[jZah\Z\rboky \ j_amevlZl_ j_Zdpbb

K lhqdb aj_gby Zlhfgh-fhe_dmeyjgh]h mq_gby \ oh^_ j_Zdpbb ijhbkoh^bl ebrv i_j_jZkij_^_e_gb_ Zlhfh\ gh g_ baf_gy_lky bo h[ s__ dhebq_kl\h Ihwlhfm h[sZy fZkkZ \k_o Zlhfh\ lZd`_ g_ baf_gy _lky Wlhl aZdhg e_`bl \ hkgh\_ jZkq_lh\ ih mjZ\g_gbyf j_Zdpbc

6

AZdhg ihklhygkl\Z khklZ\Z \_s_kl\Z

Ex[h_ keh`gh_ \_s_kl\h fhe_dmeyjgh]h kljh_gby g_aZ\bkbfh hl kihkh[h\ _]h ihemq_gby bf__l ihklhygguc dZq_kl\_gguc b dheb q_kl\_gguc khklZ\

K lhqdb aj_gby Zlhfgh-fhe_dmeyjgh]h mq_gby \ ijhp_kk_ h[jZah \Zgby fhe_dmeu h[uqgh mqZkl\m_l g_[hevrh_ qbkeh Zlhfh\ dhlhju_ kh_^bgyxlky \k_]^Z \ kljh]h hij_^_e_gghf dhebq_kl\_gghf khhlghr_- gbb Ihwlhfm dhebq_kl\_gguc khklZ\ h[jZamxsboky fhe_dme Z ke_^h- \Zl_evgh b khklZ\ h[jZamxsboky \_s_kl\ fhe_dmeyjgh]h kljh_gby hdZau\Z_lky ihklhygguf < ijhp_kkZo `_ h[jZah\Zgby djbklZeeh\ g_- fhe_dmeyjgh]h Zlhfgh]h beb bhggh]h kljh_gby mqZkl\m_l hq_gv [hev- rh_ qbkeh qZklbp dhlhju_ kh_^bgyxlky g_ \k_]^Z \ kljh]h hij_^_e_g- ghf dhebq_kl\_gghf khhlghr_gbb Ihwlhfm dhebq_kl\_gguc khklZ\ h[jZamxsboky Zlhfguo beb bhgguo djbklZeeh\ fh`_l [ulv i_j_f_g- guf \ aZ\bkbfhklb hl kihkh[h\ bo ihemq_gby Dhebq_kl\_gguc khklZ\ keh`guo \_s_kl\ m^h[gh \ujZ`Zlv q_j_a fZkkh\u_ ^heb we_f_glh\

FZkkh\Zy ^hey we_f_glZ \ \_s_kl\_ qbkeh ihdZau\Zxs__ dZ dmx qZklv hl h[s_c fZkku \_s_kl\Z khklZ\ey_l fZkkZ Zlhfh\ ^Zg gh]h we_f_glZ FZkkh\Zy ^hey h[hagZqZ_lky kbf\hehf©wªb \ujZ`Z _lky eb[h \ ^heyo _^bgbpu eb[h \ ijhp_glZo gZijbf_j beb 35 FZkkh\u_ ^heb we_f_glh\ : b < \ keh`ghf \_s_kl\_ :o<m jZk kqblu\Zxlky ih nhjfmeZf

w(A) =

x Ar

(A)

;

w(B) =

y Ar

(B)

.

M r (Ax By )

M r (Ax By )

 

 

 

 

Ijb wlhf kmffZ agZq_gbc fZkkh\uo ^he_c we_f_glh\ \oh^ysbo \ khklZ\ \_s_kl\Z \k_]^Z jZ\gZ beb

Ijbf_j <uqbkeblv agZq_gby fZkkh\uo ^he_c we_f_glh\ \ Zah lbklhc dbkehl_

J_r_gb_

JZkkqblZ_f agZq_gb_ Mr dbkehlu

Mr(HNO2) = Ar(H) + Ar(N) + 2Ar(O) = 1 + 14 + 32 = 47.

JZkkqblZ_f agZq_gby fZkkh\uo ^he_c we_f_glh\

w(H) =

1 Ar (H)

 

=

1

 

= 0,021 = 2,1 %;

 

 

 

 

 

 

 

M r (HNO2 )

 

47

 

 

w(N) =

 

1 Ar (N)

=

14

 

= 0,298

= 29,8 % ;

M r (HNO2 )

47

 

 

 

 

 

 

 

 

w(O) = 100 % 2,1 % 29,8 % = 68,1 % .

7

Ijbf_j . Hij_^_eblv ijhkl_crmx nhjfmem h^gh]h ba hdkb^h\ ZahlZ \ dhlhjhf fZkkh\Zy ^hey dbkehjh^Z jZ\gZ

J_r_gb_

Imklv fZkkZ hdkb^Z NxOy jZ\gZ ] JZkkqblZ_f fZkku Zlhfh\ ZahlZ b dbkehjh^Z \ hdkb^_

Z m(O) = m(NxOy) · w2 ]Â ] [ m(N) = m(NxOy) – m(O) = ] ] ]

GZc^_f obfbq_kdb_ dhebq_kl\Z Zlhfh\ ZahlZ b dbkehjh^Z

Z n(N) =

m(N)

=

 

36,85 ]

 

fhev

M (N)

14 ] fhev

 

 

 

 

[ n(O) =

m(O)

=

 

63,15 ]

 

fhev

M (O)

16 ] fhev

 

 

 

 

GZc^_f fheyjgh_ khhlghr_gb_ ZahlZ b dbkehjh^Z \ hdkb^_

n(N) : n(O fhev fhev fhev fhev

Ke_^h\Zl_evgh bkdhfZy nhjfmeZ hdkb^Z – N2H3.

Ijbf_j . G_ba\_klgh_ \_s_kl\h fZkkhc ] kh`]eb \ ba[uld_ dbkehjh^Z b ihemqbeb m]e_dbkeuc ]Za fZkkhc ] b \h^m fZkkhc 3,6 ] Hij_^_eblv fhe_dmeyjgmx nhjfmem k]hj_\r_]h \_s_kl\Z _keb hlghkbl_evgZy iehlghklv _]h iZjh\ ih \ha^mom jZ\gZ

J_r_gb_

Ihkdhevdm \ j_amevlZl_ k]hjZgby \_s_kl\Z h[jZah\Zebkv m]e_ dbkeuc ]Za b \h^Z ^_eZ_f \u\h^ qlh \ _]h khklZ\ \oh^yl m]e_jh^ \h ^hjh^ b \hafh`gh dbkehjh^

JZkkqblZ_f fZkkm m]e_jh^Z \ h[jZah\Z\r_fky KH2:

F KH2 ] fhevÂ] fhev ] fhev

] KH2)

kh^_j`Zl

] K

] KH2)

-"-

x ] K x = ] K

JZkkqblZ_f fZkkm \h^hjh^Z \ h[jZah\Z\r_cky \h^_

F G2H Â] fhev ] fhev ] fhev

] G2H kh^_j`Zl

] G

] G2H

-"-

m ] K m ] G

GZc^_f kmffm fZkk m]e_jh^Z b \h^hjh^Z \oh^b\rbo \ khklZ\ bkoh^gh]h \_s_kl\Z

m(C) + m(H ]

Ihkdhevdm kmffZ fZkk K b G ] f_gvr_ fZkku k]hj_\r_]h \_s_kl\Z ] ^_eZ_f \u\h^ qlh \ _]h khklZ\ \oh^be lZd`_ b dbkeh jh^ fZkkZ dhlhjh]h jZ\gZ m H = 6 – ]

8

Hij_^_ebf ijhkl_cr__ fheyjgh_ khhlghr_gb_ K G b H \ bk oh^ghf \_s_kl\_ l _ _]h ijhkl_crmx nhjfmem

n(C) : n(H) : n(O) =

m(C)

:

m(H)

:

m(O)

=

 

 

 

 

 

 

 

 

 

 

M (C) M (H) M (O)

=

 

2,4 ]

:

0,4 ]

 

:

3,2 ]

=1: 2 :1.

12 ] fhev

 

 

16 ] fhev

 

1 ] fhev

 

 

 

 

LZdbf h[jZahf ijhkl_crZy wfibjbq_kdZy nhjfmeZ \_s_kl\Z KG2H

Ke_^m_l hlf_lblv qlh ijhkl_crZy nhjfmeZ \_s_kl\Z hlh[jZ`Z_l ebrv ijhkl_cr__ gZbf_gvr__ qbkeh\h_ khhlghr_gb_ Zlhfh\ we_ f_glh\ \ g_f Fhe_dmeyjgZy `_ nhjfmeZ \_s_kl\Z hljZ`Z_l j_Zevgh_ qbkeh Zlhfh\ dZ`^h]h we_f_glZ \ fhe_dme_ b ihemqZ_lky mfgh`_gb_f bg^_dkh\ \ ijhkl_cr_c nhjfme_ gZ hij_^_e_ggh_ qbkeh jZa

JZkkqblZ_f agZq_gb_ fheyjghc fZkku bkoh^gh]h \_s_kl\Z ih _]h hlghkbl_evghc iehlghklb

M1(CxHyOz) = 29 · D \ha^ = 29 · ] fhev

JZkkqblZ_f agZq_gb_ fheyjghc fZkku bkoh^gh]h \_s_kl\Z ih _]h ijhkl_cr_c nhjfme_

M2(CH2O ] fhev

Ihkdhevdm agZq_gb_ F1 [hevr_ agZq_gby F2 \ jZaZ lh ^ey gZoh`^_gby fhe_dmeyjghc nhjfmeu \_s_kl\Z \k_ bg^_dku \ _]h ijh kl_cr_c nhjfme_ gm`gh m\_ebqblv \ jZaZ LZdbf h[jZahf bkdhfZy nhjfmeZ K3G6H3.

AZdhg wd\b\Ze_glh\

<_s_kl\Z \klmiZxl \ j_Zdpbb b h[jZamxlky \ j_amevlZl_ j_Zd pbc \ wd\b\Ze_glguo dhebq_kl\Zo

<gZqZe_ jZkkfhljbf hij_^_e_gby ihgylbc obfbq_kdbc wd\b\Z e_gl qbkeh wd\b\Ze_glghklb nZdlhj wd\b\Ze_glghklb fheyjgZy fZkkZ wd\b\Ze_glZ fheyjguc h[t_f wd\b\Ze_glZ b dhebq_kl\h \_s_ kl\Z wd\b\Ze_glZ

Obfbq_kdbc wd\b\Ze_gl j_ZevgZy beb mkeh\gZy qZklbpZ \_s_ kl\Z dhlhjZy \ dbkehlgh-hkgh\ghc j_Zdpbb wd\b\Ze_glgZ l _ ob- fbq_kdb jZ\ghp_ggZ h^ghfm bhgm G+ Z \ hdbkebl_evgh-\hkklZgh\b- l_evghc j_Zdpbb h^ghfm we_dljhgm

J_ZevgZy qZklbpZ fhe_dmeZ Zlhf beb bhg mkeh\gZy qZklbpZ hij_^_e_ggZy qZklv iheh\bgZ lj_lv b l ^ fhe_dmeu ZlhfZ beb bhgZ

9

< h[s_f kemqZ_ wd\b\Ze_gl ex[h]h \_s_kl\Z O h[hagZqZ_lky ke_-

 

1

 

 

*

 

^mxsbf h[jZahf

 

 

(X )

]^_ z

 

qbkeh wd\b\Ze_glghklb

 

 

 

z

 

 

 

 

 

Qbkeh wd\b\Ze_glghklb z* qbkeh bhgh\ G+ \ dbkehlgh-hkgh\- ghc j_Zdpbb beb qbkeh we_dljhgh\ \ hdbkebl_evgh-\hkklZgh\bl_evghc j_Zdpbb dhlhjh_ wd\b\Ze_glgh obfbq_kdb jZ\ghp_ggh h^ghc qZklb- p_ \_s_kl\Z O

NZdlhj wd\b\Ze_glghklb 1 qbkeh dhlhjh_ ihdZau\Z_l z

dZdZy ^hey qZklv j_Zevghc qZklbpu O wd\b\Ze_glgZ h^ghfm bhgm G+ \ dbkehlgh-hkgh\ghc j_Zdpbb beb h^ghfm we_dljhgm \ hdbkebl_evgh- \hkklZgh\bl_evghc j_Zdpbb

 

1

 

 

FheyjgZy fZkkZ wd\b\Ze_glZ \_s_kl\Z O – M

 

 

(X )

fZkkZ

 

 

z

 

 

 

h^gh]h fhev wd\b\Ze_glZ wlh]h \_s_kl\Z ?^bgbpZ baf_j_gby ] fhev beb d] fhev FheyjgZy fZkkZ wd\b\Ze_glZ \_s_kl\Z O k\yaZgZ k fh eyjghc fZkkhc \_s_kl\Z O khhlghr_gb_f

 

1

 

 

M (X )

 

M

 

 

(X )

=

 

 

.

 

 

z

 

z

 

 

 

 

 

K ^jm]hc klhjhgu fheyjgZy fZkkZ wd\b\Ze_glZ \_s_kl\Z O qbk e_ggh jZ\gZ hlghr_gbx fZkku \_s_kl\Z O d khhl\_lkl\mxs_fm ob fbq_kdhfm dhebq_kl\m wd\b\Ze_glZ \_s_kl\Z O:

 

1

 

 

m(X )

.

M

 

 

(X )

=

 

 

 

 

 

 

 

1

 

z

 

 

 

 

 

 

 

 

 

n

 

 

(X )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

1

 

 

Obfbq_kdh_ dhebq_kl\h wd\b\Ze_glZ \_s_kl\Z O – n

 

 

(X )

 

 

z

 

 

 

\_ebqbgZ qbke_ggh jZ\gZy hlghr_gbx fZkku \_s_kl\Z O d fheyjghc fZkk_ _]h wd\b\Ze_glZ ?^bgbpZ baf_j_gby fhev

 

1

 

 

Fheyjguc h[t_f wd\b\Ze_glZ ]ZaZ O – Vm

 

 

(X )

h[t_f h^

 

 

z

 

 

 

gh]h fhey wd\b\Ze_glZ ]Zahh[jZagh]h \_s_kl\Z O ?^bgbpZ baf_j_- gby e fhev beb f3 fhev

10

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]