
- •3. Элементы кинематики
- •3.1. Материальная точка, система материальных точек, абсолютно твердое тело - простейшие физические модели
- •3.1.1. Материальная точка
- •3.1.3. Абсолютно твердое тело
- •3.2. Тело отсчета
- •3.3. Система отсчета
- •3.8.1. Скорость направлена по касательной к траектории
- •3.8.2. Компоненты скорости
- •3.9. Вычисление пройденного пути
- •3.10.1. Нормальное и тангенциальное ускорение
- •6. Кинематика вращательного движения
- •6.1. Поступательное и вращательное движение
- •6.2. Псевдовектор бесконечно малого поворота
- •6.5. Связь линейной скорости материальной точки твердого тела и угловой скорости
- •4. Динамика материальной точки
- •4.6.1. Система си (System international)
- •4.6.1.1. Размерность силы
- •4.7. Третий закон Ньютона
- •5. Законы сохранения
- •5.1. Механическая система - это совокупность тел, выделенных нами для рассмотрения 5.1.1. Внутренние и внешние силы
- •5.2. Закон сохранения импульса
- •5.6.1. Консервативность силы тяжести
- •5.6.2. Неконсервативность силы трения
- •5.7. Потенциальная энергия может быть введена только для поля консервативных сил
- •5.8.Закон сохранения механической энергии
- •7. Динамика вращательного движения
- •8. Элементы специальной теории относительности
- •8.2. Принцип относительности Галилея:
- •8.3. Неудовлетворительность механики Ньютона при больших скоростях
- •Принцип постоянства скорости света:
- •8.5.1. Вывод преобразований Лоренца
- •Электричество
- •9. Постоянное электрическое поле
- •9.3. Электрическое поле
- •9.3.6. Принцип суперпозиции электрических полей
- •9.3.7. Напряженность поля точечного заряда
- •9.3.8. Линии напряженности
- •9.4.2.2. Заряд в произвольном месте внутри сферы
- •9.4.2.4. Поток вектора е поля системы зарядов, находящихся внутри замкнутой поверхности
- •9.4.2.5. Поток вектора е для поля, созданного зарядами, находящимися вне замкнутой поверхности
- •9.4.3. Формулировка теоремы Гаусса
- •9.4.4.1. Поле равномерно заряженной бесконечной плоскости
- •9.9. Проводник в электрическом поле
- •9.10. Электроемкость уединенного проводника
- •9.11. Электроемкость конденсатора
- •9.12. Энергия электрического поля
- •9.12.1. Плотность энергии электрического поля в вакууме
- •9.13. Электрическое поле в диэлектрике
- •9.13.1. Диэлектрик?
- •9.13.1.1. Два типа диэлектриков - полярные и неполярные
- •9.13.2. Поляризованность диэлектрика (вектор поляризации) - это дипольный момент единицы объема:
- •9.13.4.1. Плотность энергии электрического поля в диэлектрике
- •10. Постоянный электрический ток
- •10.1. Сила тока
- •10.2. Плотность тока
- •10.2.1. Связь плотности тока и скорости упорядоченного движения зарядов
- •10.4. Закон Ома для участка цепи
- •10.5. Закон Ома в дифференциальной форме
- •10.6. Закон Джоуля-Ленца в дифференциальной форме
- •Магнетизм. Уравнения Максвелла
- •11. Магнитное поле в вакууме
- •11.2. Проводник с током создает только магнитное поле, другой проводник с током реагирует только на магнитное поле
- •11.3. Рамка с током как регистратор магнитного поля. Вектор магнитной индукции
- •11.5.6. Магнитное поле тороида
- •11.6. Закон Ампера
- •11.7. Сила Лоренца - это сила, действующая со стороны магнитного поля на движущийся в нем заряд
- •11.7.1. Движение заряженной частицы в однородном магнитном поле
- •11.11.1. Потокосцепление
- •11.11.2. Индуктивность соленоида
- •11.11.3. Энергия магнитного поля
- •12. Магнитное поле в веществе
- •12.2. Классификация магнетиков
- •13. Уравнения Максвелла
- •13.1. Первая пара уравнений Максвелла в интегральной форме
- •13.1.1. Первое уравнение первой пары - это закон Фарадея-Ленца
- •13.1.2. Второе уравнение первой пары - нет магнитных зарядов
- •13.2. Вторая пара уравнений Максвелла в интегральной форме
- •13.3. Система уравнений Максвелла в интегральной форме
- •13.4. Система уравнений Максвелла в дифференциальной форме
- •Литература,
- •14.1.1.4. График гармонического колебания
- •14.2 Дифференциальное уравнение гармонических колебаний
- •14.2.1 Колеблющиеся системы
- •14.3.2. Сложение колебаний одинаковой частоты и одинакового направления
- •14.3.3. Сложение колебаний близких частот
- •14.3.4. Сложение взаимно-перпендикулярных колебаний
- •14.4. Затухающие колебания
- •14.4.1. Колеблющиеся системы
- •14.4.5. Дифференциальное уравнение, описывающее затухающие колебания наших двух систем в этих обозначениях будет иметь один и тот же вид
- •14.4.6. Решение
- •14.4.7. Проверка
- •14.5.5. Дифференциальное уравнение, описывающее вынужденные колебания
- •14.5.6. Решение дифференциального уравнения
- •14.5.6.1. Частное решение неоднородного уравнения
- •14.5.6.1.1. Векторная диаграмма
- •14.5.6.1.2. Резонанс
- •16. Электромагнитные волны
- •16.1. Система уравнений Максвелла для плоской электромагнитной волны
- •16.1.1. Поперечность электромагнитных волн
- •16.1.2. Волновое уравнение
- •16.5.1.1. Вероятностное истолкование электромагнитной волны
- •17. Геометрическая оптика
- •17.1. Законы геометрической оптики
- •17.1.1. Закон прямолинейного распространения света
- •17.1.2. Закон независимости световых лучей
- •17.1.3. Законы отражения и преломления
- •17.2. Полное внутреннее отражение
- •17.3. Тонкие линзы
- •17.3.1. Собирающие и рассеивающие линзы
- •17.3.2. Фокусы линзы, фокальная плоскость
- •17.3.3. Фокусное расстояние тонкой линзы
- •17.3.4. Построение изображения в линзах
- •18.2. Способы получения когерентных источников
- •18.2.1. Опыт Юнга
- •18.2.2. Зеркала Френеля
- •18.2.3. Бипризма Френеля
- •18.2.4. Интерференция при отражении от прозрачных пластинок
- •18.2.4.1. Кольца Ньютона
- •18.3. Многолучевая интерференция
- •19. Дифракция света
- •19.1 Дифракция Френеля и Фраунгофера
- •19.2. Принцип Гюйгенса-Френеля
- •19.2.1. Математическая формулировка принципа Гюйгенса-Френеля
- •19.3. Зоны Френеля
- •19.3.1. Дифракция Френеля на круглом отверстии
- •19.3.2. Дифракция Фраунгофера на щели
- •19.3.2.1. Таутохронность линзы и ее следствия
- •19.3.2.2. Определение положений максимумов и минимумов методом зон Френеля
- •19.3.2.3. Зависимость интенсивности дифракционной картины от угла дифракции φ
- •19.4 Дифракционная решетка
- •19.4.1. Условие главного максимума для дифракционной решетки
- •19.4.2. Зависимость интенсивности дифракционной картины решетки от угла дифракции φ
- •19.4.2.1. Минимумы интенсивности дифракционной картины решетки
- •19.4.2.2. Добавочные минимумы, ближайшие к главным максимумам
- •19.4.3. График интенсивности Ip(Sinφ )
- •19.4.4. Дифракционная решетка как спектральный прибор
- •19.4.4.1. Угловая дисперсия дифракционной решетки
- •19.4.4.2. Линейная дисперсия
- •19.4.4.3. Разрешающая сила дифракционной решетки
- •19.4.4.3.1. Критерий Релея
- •19.4.4.4. Разрешающая сила решетки для цуга волн. Соотношение между длиной цуга δx и точностью определения волнового числа δk.
- •20. Поляризация света
- •20.1. Плоско поляризованная электромагнитная волна
- •20.2. Принцип действия поляризатора электромагнитной волны
- •20.2.1. Поляроид
- •20.3. Закон Малюса
- •20.3.1. Частично поляризованный свет. Степень поляризации
- •20.4. Эллиптическая и круговая поляризация
- •20.5. Поляризация при отражении и преломлении
- •20.5.1. Формулы Френеля
- •20.5.2. Закон Брюстера
- •20.6. Двойное лучепреломление
- •20.6.1. Модель двояко преломляющего кристалла
- •20.6.1.1. Необыкновенный и обыкновенный луч
- •21. Взаимодействие света с веществом
- •21.1. Дисперсия света
- •21.1.1. Классическая электронная теория дисперсии
- •21.1.1.1. Связь показателя преломления с дипольным моментом молекулы
- •21.1.1.2. Связь дипольного момента молекулы с напряженностью поля световой волны
- •21.1.1.2.1. Простейшая модель атома в поле световой волны
- •21.1.1.2.2. Уравнение движения электрона и его решение
- •21.1.1.2.3. Проекции дипольного момента и напряженности поля волны на ось X
- •21.1.1.3. Выражение для n2
- •21.1.1.4. Анализ зависимости n(ω)
- •21.2.1. Связь групповой скорости u с фазовой скоростью V
- •14 Декабря 1900 г. Считают датой рождения квантовой физики.
- •Лекция n 1 § 2. Тепловое излучение
- •Лекция n 1 § 3. Излучение абсолютно черного тела. Закон Кирхгофа.
- •Итоги лекции n 1
- •Немецкий физик Макс Планк в 1900 г. Выдвинул гипотезу, согласно которой электромагнитная энергия излучается порциями, квантами энергии. Величина кванта энергии (см. (1.2):
- •Лекция n 2 Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина § 1. Проблема излучения абсолютно черного тела. Формула Планка
- •§ 2. Закон Стефана-Больцмана и закон Вина
- •Итоги лекции n 2
- •Лекция n 3
- •Проблема фотоэффекта. Уравнение Эйнштейна для фотоэффекта
- •§ 1. Проблема фотоэффекта
- •Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.
- •1) Наибольшее воздействие оказывают ультрафиолетовые лучи;
- •2) Сила тока возрастает с увеличением интенсивности света, освещающего фотокатод;
- •3) Испущенные под действием света заряды имеют отрицательный знак.
- •2) Максимальная кинетическая энергия электронов, у фотокатода, (mv2max)/2, прямо пропорциональна частоте V света, освещающего фотокатод.
- •Лекция n 3 § 2. Уравнение Эйнштейна для фотоэффекта
- •Итоги лекции n 3
- •Лекция n 4 Боровская теория атома водорода Спектр излучения атома водорода в теории Бора § 1. Боровская теория атома водорода
- •Первый постулат Бора: Существуют стационарные состояния атома, находясь в которых он не излучает электромагнитных волн.
- •Условие стационарности состояния атома - квантование момента импульса электрона l.
- •Лекция n 4 § 2. Спектры излучения атома водорода в теории Бора
- •Итоги лекции n 4
- •Корпускулярно-волновой дуализм микрообъектов
- •1. Скорость фотона всегда постоянна и равна скорости света в вакууме.
- •2. Масса фотона
- •3. Энергия фотона
- •4. Импульс фотона
- •§ 3. Интерференция одиночных фотонов
- •Но опыт показывает, что с течением времени на экране наблюдения формируется интерференционная картина с тем же самым расположением максимумов и минимумов, как и при большой интенсивности света.
- •§ 4. Вероятностная интерпретация плотности энергии и интенсивности электромагнитной волны
- •Итоги лекции n 5
- •Лекция n 6 § 2. Дифракция одиночных электронов
- •§ 3. Волновая функция и волна де Бройля
- •Лекция n 6 § 4. Соотношения неопределенностей
- •Соотношения неопределенностей являются следствием корпускулярно-волнового дуализма квантовых объектов.
- •Итоги лекции n 6
- •§ 2. Понятия об операторах физических величин
- •Лекция n 7 § 3. Решение уравнения Шредингера для простейших случаев: свободная частица и частица в бесконечно глубокой одномерной потенциальной яме
- •Плотность вероятности обнаружения частицы:
- •Итоги лекции n 7
- •§ 2. Квантовые числа
- •Лекция n 8 § 3. Спектры атома водорода в теории Шредингера
- •§ 4. Волновая функция основного состояния атома водорода
- •Итоги лекции n 8
- •Волновые функции ψnlm(r, θ, φ) стационарных состояний атома водорода определяются тремя квантовыми числами:
- •§ 2. Физические основы периодической системы элементов д. И. Менделеева
- •Лекция n 9 § 3. Молекула
- •§ 4. Объяснение температурной зависимости теплоемкостей газов
- •Итоги лекции n 9
- •Элементы физики ядра и элементарных частиц
- •Лекция n 16 § 2. Дефект массы и энергия связи атомного ядра. Ядерные силы
- •1. Слияние (синтез) легких ядер в одно ядро;
- •2. Деление тяжелых ядер на несколько более легких ядер.
- •Итоги лекции n 16
- •§ 3. Ядерный реактор
- •Лекция n 17 § 4. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •Итоги лекции n 17
- •§ 2. Закон радиоактивного распада
- •Лекция n 18 § 3. Взаимодействие радиоактивного излучения с веществом
- •Лекция n 18 § 4. Методы регистрации ионизирующих излучений
- •Итоги лекции n 18
- •§ 1. Электронный газ в модели одномерной бесконечно глубокой ямы
- •Лекция n 10 § 2. Электронный газ в модели бесконечно глубокой трехмерной потенциальной ямы
- •Итоги лекции n 10
- •Квантовая теория свободных электронов в металле для модели трехмерной потенциальной ямы (см. § 2) дает следующую формулу для энергии Ферми (см (10.10)):
- •Оценки дают для ef(0) значение около 5 эВ. Элементы квантовой статистики
- •Лекция n 11
- •§2. Анализ функции f(e)
- •Итоги лекции n 11
- •Итоги лекции n 12
- •Квантовая теория электропроводности металлов дает для удельной проводимости σ формулу (12.2):
- •Введение в зонную теорию твердых тел лекция n 13 Происхождение энергетических зон в кристаллах. Металлы, диэлектрики и полупроводники в зонной теории. Собственная проводимость полупроводников
- •§ 1. Происхождение энергетических зон в кристаллах. Металлы
- •§ 2. Диэлектрики и полупроводники
- •Лекция n 13 § 3. Собственная проводимость полупроводников
- •Итоги лекции n 13
- •Если самая верхняя - валентная - зона заполнена наполовину, то она является зоной проводимости. Такие кристаллы относятся к металлам. Все металлы хорошо проводят электрический ток.
- •Донорные примеси, полупроводники n-типа
- •§ 2. Акцепторные примеси. Полупроводники p-типа
- •Лекция n 14 § 3. Электронно-дырочный переход. Полупроводниковый диод
- •§ 4 . Полупроводниковый триод - транзистор
- •Итоги лекции n 14
- •Основы физики лазеров лекция n 15
- •§ 1. Вводные сведения
- •§ 2. Вынужденное (стимулированное) излучение
- •§ 3. Состояние с инверсией населенности
- •Лекция n 15 § 4. Оптический резонатор
- •§ 5. Способы создания инверсии населенности
- •Лекция n 15 § 6. Виды лазеров и их применение
- •2) Резонансное воздействие на атомы, молекулы и молекулярные комплексы, вызывающие процессы фотодиссоциации, фотоионизации, фотохимические реакции.
- •Итоги лекции n 15
- •Список литературы, использованный при написании II части конспекта лекций по физике
§2. Анализ функции f(e)
Выпишем функцию распределения Ферми-Дирака в следующем виде:
Нетрудно убедиться, что при E = EF функция f(E) = 1/2.
Поведение функции f(E) (и электронного газа в металле) зависит от соотношения между температурой металла T и температурой Ферми (10.11).
При T << TF (т.е. kT << EF) электронный газ называют вырожденным и график функции f(E) незначительно отличается от ступени. В самом деле, показатель экспоненты (E - EF) / kT будет велик по модулю всюду, за исключением интервала энергий, в котором (E - EF) ≤ kT. При этом, если E < EF, то (E - EF) / kT будет величиной отрицательной и большой по модулю, значит экспонента будет близка к нулю, а f(E) ≈ 1. В случае, если E > EF, показатель экспоненты будет большой положительной величиной и f(E) ≈ 0.
Запишем результаты анализа в следующем виде:
Из оценок, сделанных в § 2 лекция 10, TF ≈ 60000K, значит вплоть до Tпл - температуры плавления металлов, электронный газ вырожден (самый тугоплавкий металл, вольфрам, имеет Tпл ≈ 3693K).
При T >> TF электронный газ называется невырожденным. В этом случае график функции f(E) идет полого спадая и уже совсем не похож на ступеньку.
На рисунке 11.2 приведены графики функции f(E) (11.4) для различных температур.
Рис. 11.2
При больших значениях энергии электронов, таких, что E - EF >> kT, единицей в знаменателе функции f(E) (11.4) можно пренебречь, тогда для "хвоста" функции f(E) справедлива следующая формула:
что совпадает с распределением Максвелла-Больцмана (см. Ч. 3, (2.14)).
Итоги лекции n 11
Зависимость среднего числа фермионов в одном квантовом состоянии <n(Ei)> от их энергии и температуры называется распределением Ферми-Дирака (см. (11.1)):
здесь ЕF - уровень Ферми, параметр распределения, который определяют из условия нормировки. Другое название этого параметра - химический потенциал, который принято обозначать греческой буквой µ, т.е. EF ≡ µ.
При не очень высоких температурах, когда kT<<EF для уровня Ферми справедливо приближенное выражение (см. (11.3)):
здесь EF(0) - энергия Ферми.
Так как среднее число фермионов в одном квантовом состоянии изменяется от 0 до 1, т.е. в тех же пределах, что и вероятность f(Ei) заполнения данных квантовых состояний, то для f(Ei) справедлива формула (11.1а), аналогичная формуле (11.1):
Анализ функции f(E) при Т=0 К дает следующие результаты:
При больших значениях энергии электронов, таких, что Е-ЕF>>kT, для "хвоста" функции f(Е) справедлива формула (11.5):
что совпадает с распределением Максвелла-Больцмана.
ЛЕКЦИЯ N 12
Результаты квантовой теории электропроводности. Термоэлектронная эмиссия. Бозоны. Распределение Бозе-Эйнштейна
§ 1. Результаты квантовой теории электропроводности металла
В Ч. 4 настоящего курса была приведена формула (6.9) для σ - удельной проводимости, полученная П. Друде в рамках классической теории электропроводности:
Из распределения
Максвелла следует, что средняя скорость
движения электрона в металле <v>
пропорциональна корню квадратному из
абсолютной температуры, т.е.
ЛЕКЦИЯ N 12
§ 3. Бозоны. Распределение Бозе-Эйнштейна
Бозон - это частица или (квазичастица - как, например, фонон - квант упругих колебаний в твердых телах) с нулевым или целочисленным спином. К бозонам, как уже упоминалось, относятся также фотоны (спин s = 1), составные частицы, состоящие из четного числа фермионов (например, атом 42He), куперовские пары электронов, образование которых приводит к сверхпроводимости.
Распределение Бозе-Эйнштейна дает <n(Ei)> среднее число невзаимодействующих между собой бозонов в состоянии с энергией Ei , где i - набор квантовых чисел, характеризующих квантовое состояние. Формула распределения Бозе-Эйштейна имеет следующий вид:
где µ - химический потенциал; T - абсолютная температура; k - постоянная Больцмана.
В отличие от распределения Ферми-Дирака в знаменателе стоит "минус единица". Вследствие этого химический потенциал µ для бозонов не может быть положительным. Иначе при Ei < µ (если бы µ > 0!) показатель экспоненты в знаменателе стал бы отрицательным, экспонента стала бы меньше единицы и некоторые из чисел заполнения ni стали бы отрицательными, что невозможно.
Если полное число частиц в системе не фиксировано, как, например, для фотонов при тепловом излучении, то химический потенциал µ равен нулю.
При фиксированном числе частиц величину µ определяют из условия нормировки, как и в случае распределения Ферми-Дирака.
Применим распределение Бозе-Эйнштейна для вывода формулы Планка для u(ω, Т) - функции распределения плотности энергии в спектре излучения абсолютно черного тела.
При обычных, не лазерных, интенсивностях фотоны можно считать невзаимодействующими между собой бозонами, поэтому тепловое излучение, находящееся в равновесии со стенками излучающей полости можно рассматривать как идеальный фотонный газ.
Как было отмечено
выше, химический потенциал для системы
фотонов µ = 0. Энергия фотона
,
следовательно, распределение
Бозе-Эйнштейна для фотонов имеет
следующий вид:
здесь <n(ωi)> - среднее число фотонов с частотой ωi. Частота ωi задает квантовое состояние фотона.
Пусть ΔE обозначает энергию фотонов, находящихся в объеме ΔV и имеющих частоты, лежащие в интервале Δω.
Тогда
имеет смысл функции распределения плотности энергии в спектре излучения абсолютно черного тела (спектральное распределение).
Пусть ΔZ(ωi) - число квантовых состояний фотонов в объеме ΔV и интервале частот от ωi до ωi + Δω.
Тогда
так как произведение
дает среднюю энергию фотонов частоты
ωi,
т.е. среднюю энергию в одном квантовом
состоянии. Функция <n(ωi)>
известна, поэтому задача состоит в
нахождении числа квантовых состояний
ΔZ(ωi).
Подсчет числа квантовых состояний ΔZ делается с использованием формулы (10.5), т.е.:
здесь двойка учитывает две возможные поляризации фотонов. Фазовый объем.
где
-
объем сферического слоя в пространстве
импульсов.
Импульс фотона (см. (5.3)):
значит
Тогда
Так как частоты ωi меняются квазинепрерывно, то мы опустили индекс i, нумерующий квантовые состояния.
Подставляя в формулу (12.11) для ΔE полученное выражение ΔZ(ω) (12.12) и функцию распределения Бозе-Эйнштейна для фотонов (12.9), получим:
Используя это выражение, получим формулу Планка для функции распределения плотности энергии в спектре излучения абсолютно черного тела:
Из нее, как показано в лекции N 2, § 1, следует формула для спектральной плотности энергетической светимости абсолютно черного тела (см. (2.1), (2.2)).