Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
студ ивт 22 материалы к курсу физики / лаконично физ мех сто элма опт кв мехг.doc
Скачиваний:
4
Добавлен:
17.11.2022
Размер:
6.41 Mб
Скачать

21. Взаимодействие света с веществом

При распространении света в веществе возникают следующие явления. Во-первых, изменяется скорость распространения, см. (16.5.2), причем, скорость распространения зависит от длины световой волны. Это явление называется дисперсией.

Во-вторых, часть энергии световой волны теряется. Это явление называется поглощением или абсорбцией света.

Наконец, при распространении света в оптически неоднородной среде возникает рассеяние света на пространственных неоднородностях среды.

 

21.1. Дисперсия света

Дисперсией света называют зависимость показателя преломления n от длины волны (или от частоты), т.е.

n = n(λ).

У прозрачных веществ примерный вид зависимости изображен на следующем рисунке:

Такая зависимость n(λ), когда n уменьшается с ростом λ называется нормальной дисперсией. При прохождении белого света через призму свет разлагается в дисперсионный (призматический) спектр. Это явление впервые наблюдал И. Ньютон (1672 г.). Схема его опыта изображена на рисунке:

21.1.1. Классическая электронная теория дисперсии

Последовательное описание взаимодействия света с веществом возможно только в рамках квантовой теории. Однако, во многих случаях можно ограничиться описанием в рамках волновой (электромагнитной) теории излучения и классической электронной теории , согласно которой каждую молекулу среды можно рассматривать как систему зарядов, имеющих возможность совершать гармонические колебания - как систему осцилляторов с различными собственными частотами и коэффициентами затухания. Движение этих осцилляторов можно рассматривать на основе законов Ньютона.

21.1.1.1. Связь показателя преломления с дипольным моментом молекулы

Из теории Максвелла следует(см.16.5.2), что

.

Диэлектрическая проницаемость вещества ε показывает, во сколько раз E0 - напряженность электрического поля в вакууме больше, чем Е - напряженность поля в среде (см. 9.13.3):

.

Как известно (см. 9.13.3), поле в среде уменьшается за счет возникновения встречного поля Е' , вызванного поляризацией среды. Величина Е' связана с поляризованностью диэлектрика Р (вектором поляризации) следующим соотношением (см. 9.13.3):

.

Таким образом, поле в вакууме E0 больше, чем в среде на величину Е', т.е.:

.

По определению, поляризованность Р - это сумма дипольных моментов единицы объема среды. Если обозначить через N0 число молекул среды в единице объема, - наведенный полем световой волны дипольный момент молекулы, то

.

Тогда для ε получим:

.

Так как ε = n2(см. 16.5.2), то

.

 

21.1.1.2. Связь дипольного момента молекулы с напряженностью поля световой волны

Как видно из только что полученной связи n2 с p зависимость показателя преломления n от частоты волны ω определяется отношением p/E.

Здесь надо сделать две оговорки. Во-первых, поле, действующее на отдельную молекулу (локальное поле), вообще говоря, не совпадает с величиной среднего (макроскопического) поля в среде E. Мы не будем учитывать в элементарной теории дисперсии это различие, таким образом количественные выводы такой теории могут быть применены только к разреженным газам.

Во-вторых, дипольный момент молекулы p, наведенный полем световой волны E, является функцией от времени, т.е. p = p(t). Так как E = E(t) и фаза колебаний p(t) не совпадает, в общем случае, с фазой колебаний E(t), то для нахождения показателя преломления надо усреднить по времени отношение p(t)/E(t).

Тогда формула для n2 приобретет следующий вид:

.