Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
студ ивт 22 материалы к курсу физики / лаконично физ мех сто элма опт кв мехг.doc
Скачиваний:
4
Добавлен:
17.11.2022
Размер:
6.41 Mб
Скачать

Первый постулат Бора: Существуют стационарные состояния атома, находясь в которых он не излучает электромагнитных волн.

Стационарные состояния соответствуют дискретному ряду дозволенных значений полной энергии En (n = 1,2,3,...) (в квантовой физике мы будем обозначать полную энергию буквой Е, потенциальную - буквой U). Изменение энергии связано с квантовым (скачкообразным) переходом атома из одного стационарного состояния в другое.

Условие стационарности состояния атома - квантование момента импульса электрона l.

При движении электрона по круговой орбите радиуса rn (n = 1,2,3,...)  его момент импульса  Ln = mevrn должен быть кратен постоянной Планка, деленной на 2π, т.е.

Здесь me - масса электрона; v - его скорость. Число n называют главным квантовым числом.

Так как  , то с учетом этого обозначения условие квантования орбит будет иметь следующий вид:

 

Второй постулат Бора:

Излучение испускается или поглощается в виде квантов энергии при переходе электрона из одного стационарного состояния в другое. Энергия кванта (фотона) равна разности энергий стационарных состояний атома, между которыми происходит переход:

Здесь   En - энергия   стационарного   состояния   атома  до перехода электрона;

         Em - энергия  стационарного  состояния  после  квантового  перехода  электрона. При En > Em фотон с энергией  излучается, при En < Em атом поглощает фотон .

Как мы видим, постоянная Планка появляется у Бора дважды: первый раз она определяет стационарные состояния, второй - частоту излучения (или поглощения) при переходе атома из одного стационарного состояния в другое.

Применим условие стационарности состояния атома (4.2.). С помощью этого условия исключим из уравнения (4.1) скорость v. В результате для радиусов стационарных орбит rn получим:

Радиус первой орбиты (n = 1)  называется первым боровским радиусом, его обозначают r0. Численное значение первого боровского радиуса:

Полная энергия E атома водорода в нашей модели равна сумме кинетической энергии (mev2max)/2 и отрицательной потенциальной энергии взаимодействия электрона с ядром: (-e2)/(4πε0r), т.е.

Из уравнения движения электрона (4.1) заменим в (4.7) mv2/2  на e2/(8πε0r), тогда полная энергия атома водорода

 

Подставив сюда выражение для rn из (4.5), получим En - энергию стационарного состояния атома водорода, зависящую от главного квантового числа n:

Состояние атома водорода при главном квантовом числе n = 1 называется основным состоянием. Численное значение энергии основного состояния атома водорода:

С учетом значения E1 энергия стационарного состояния En  имеет простой вид:

Лекция n 4 § 2. Спектры излучения атома водорода в теории Бора

Изобразим на рис. 4.2. в масштабе энергетические уровни атома водорода En в зависимости от главного квантового числа n, в соответствии с формулой (4.10).

Рис. 4.2

Согласно второму постулату Бора (4.4.) энергия излученного фотона, , равна разности энергий стационарных состояний, между которыми происходит квантовый переход:

 , в случае излучения n > m.

Подставляя сюда выражения для En и Em, (4.8) для частоты n, получим:

здесь

- постоянная Ридберга, она так названа в честь шведского физика И. Ридберга.

Так как λ = c/v, то для длины волны λ получим следующее выражение:

Здесь

 - тоже называют постоянной Ридберга.

Из теории Бора следует, что спектр атома водорода имеет линейчатый характер, причем, наблюдаемые линии объединены в спектральные серии. Задается серия номером m уровня, на который происходит квантовый переход. Первые серии названы именами ученых-физиков:

Спектры атома водорода были изучены экспериментально до создания Бором своей теории. Хорошее совпадение экспериментальных данных с выводами теории Бора для спектров атома водорода говорит в пользу этой теории.

Однако, попытки применить теорию Бора к более сложным атомам потерпели неудачу. В настоящее время теория атома Бора представляет исторический интерес как промежуточный этап к созданию более верной теории. Такая теория теперь существует - это квантовая механика.