Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3728

.pdf
Скачиваний:
0
Добавлен:
15.11.2022
Размер:
12.51 Mб
Скачать

Issue № 4 (40), 2018

ISSN 2542-0526

pressure system [19, 20]. New gas-regulating stations and cabinet-type regulating stations should be in place as well as telemechanization and automization of technological processes associated with gas supply. The equipment of gas-regulating stations should be examined in a timely manner with an emphasis on combined pressure regulators.

New construction areas as proposed by the general plan of the city of Voronezh are supplied with gas from the existing gas-regulating stations (Fig.).

VORONEZH

General plan of the city of Voronezh

Gas supply scheme

Moscow

M 1 : 25000

Chistoye

Chistoye

GRS

Krasnolesniy

Vodokachka

Zemlyansk

Semiluki GRS

Kursk

TES

Ostrogozhsk

Fig. Gas supply scheme of the city of Voronezh with the marked construction areas up to 2020: I—V are predicted construction areas

31

Russian Journal of Building Construction and Architecture

According to the above scheme and principles of energy equivalence [1, 4], a model of an excited condition of a gas supply system [6, 13] was designed in five possible construction areas. As a result of the calculations, the hypothesis was proved of a sufficient capacity of the five gasregulating stations for a predicted construction site. Each area was considered individually and joined to the nearest GRS. The studies showed that there is no need to build an extra GRS.

According to the general plan, the total gas consumption in the areas is currently 199458 nm3/h.

The general plan of the municipal design of the city area and planning restrictions of the urban resources up to 2020 proposes 5 major areas of residential construction (see Fig.):

––central area (construction with random high-rises and reconstruction) with the total area of 3000 thousand m2;

––area around the Voronezh State Technical University. The northern construction site and new construction (industrial park) with the total area of 1720 thousand m2;

––the estuary of the River Done is the western area of residential construction on a flush with the total area of 3630 thousand m2;

––Shilovo is the second South-West area (of priority construction) with the total area of 2250 thousand m2;

––Otradnoe district is the eastern area (left bank) with the total area of 2625 thousand m2.

 

 

 

 

 

 

 

Таble 4

 

Construction prospects, thousand m2, up to 2020 in the city’s districts

 

 

 

 

 

 

 

 

 

Year

Zhelezhnodorozhniy

Levoberezhniy

Central

Leninskiy

Sovetskiy

Kominternovskiy

Total

 

 

 

 

 

 

 

 

2010

85

37.68

67.5

49.67

122.92

237.23

600

 

 

 

 

 

 

 

 

2011

120.81

254.12

89.2

67.54

146.16

92.17

770

 

 

 

 

 

 

 

 

2012

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2013

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2014

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2015

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2016

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2017

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2018

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2019

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

2020

120.81

254.12

89.2

67.54

146.16

146.16

770

 

 

 

 

 

 

 

 

Total

1293.1

2578.88

959.5

725.07

1584.52

1158.93

8300

 

 

 

 

 

 

 

 

32

Issue № 4 (40), 2018

ISSN 2542-0526

There is no gas supply deficit in Voronezh. Despite the fact that an new construction is set to take place, the maximum total capacity of the GRA is sufficient for it to supply gas considering resources for further development. District division of the construction area up to 2020 is presented in Table 4. There are arrangements being made as to how likely the construction is to occur till 2035.

Gas is supplied to a cottage and 3—7-storey construction. Taking everything into account, a system of program measures is set forth.

In order to optimize the gas supply in the city of Voronezh and make the gas regulation more intense, a series of reconstruction and modernization efforts has to be made including stage- by-stage development.

According to the findings of the processing statistical data on the gas supply systems of the city in 2010, 2015 and 2017, a series of measures to improve the reliability of the gas supply of the city of Voronezh has to be taken up until 2035 (Table 5).

 

 

 

 

 

 

 

Таble 5

 

Measures for improving the reliability of the gas supply system of the city

 

 

 

of Voronezh up until 2035

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approximate

 

Object

Materials

Measure-

 

Amount

estimatecost,

Cause

and equipment

ment units

 

thousand

 

 

 

 

 

 

roubles

 

 

 

 

 

 

 

 

 

 

End of the construction

 

 

 

 

 

Reliable

 

of ahigh-pressured(1,2МPа)

Pipe

 

 

 

 

gas supply and

1

gas pipeline 325 mm long

km

 

1.9

9600

cross-feeding

D325 mm

 

 

from the GRS-5 (Somovo)

 

 

 

 

of the GRS-2

 

 

 

 

 

 

 

to the Repnoe guesthouse

 

 

 

 

 

and GRS-5

 

 

 

 

 

 

 

 

 

Start of the operation of a

 

 

 

 

 

Reliable gas

 

high-pressure(1.2 МPа)gas

Pipe

 

 

 

 

supply and

2

pipeline(insertedintotheexi-

 

 

 

140

cross-feeding

D325 mm

 

 

 

 

stinggaspipelineaftercros-

 

 

 

 

 

of the GRS-2

 

sing the Tambov highway)

 

 

 

 

 

and GRS

 

 

 

 

 

 

 

 

 

Construction of a high-

Труба

 

 

 

 

 

3

pressure (1.2 MPa) gas

D108 mm

km

 

0.5

1330

 

 

pipeline d159 mm Tenistiy

D159 mm, CRS

 

 

 

 

Reliable

 

 

 

 

 

 

 

gas supply

 

Construction of a high-

Pipe

 

 

 

 

4

pressure (1.2 МPа)

km

 

6

44860

 

D159 mm, GRS

 

 

 

in Ostrogozhskaya Street

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

Russian Journal of Building Construction and Architecture

 

 

 

 

 

 

Table 5 continued

 

 

 

 

 

 

 

 

 

 

 

 

Approximate

 

Object

Materials

Measure-

Amount

estimatecost,

Cause

and equipment

ment units

thousand

 

 

 

 

 

roubles

 

 

 

 

 

 

 

 

 

Construction of a high-pres-

 

 

 

 

 

5

sure (1.2 MPa) gas pipeline

Pipe

km

4

20300

 

 

along Ostuzheva Street to

D300 mm

 

 

 

 

 

the GRS in Minskaya Street

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstructionofahigh-

Pipe

 

 

 

 

6

pressure(0.6 MPa)gaspipe-

D500 mm,

km

10

142000

Increasing

line from the GRS-4 (Yam-

Valve

the productivity

 

noe) to Kholzunov Street

D500 — 1

 

 

 

 

 

 

 

 

 

 

 

7

Reconstruction of the head

GRS

units

1

15000

Technical

GRS№2,3,GazovayaStreet

reequipment

 

 

 

 

 

 

 

 

Reconstruction of a high-

 

 

 

 

Optimization

 

pressure (0.6 МPа) gas

Pipe

 

 

 

8

km

0.5

12000

of the project

pipeline along Krasnodon-

D700 mm

 

skaya Street

 

 

 

 

specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstruction of a high-

Pipe

 

 

 

Increasing

9

pressure (0.6 МPа) gas pi-

km

2.0

27500

D426 mm

the productivity

 

peline in Lomonosov Street

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstruction of a high-

 

 

 

 

 

10

pressure ( 0.6 МPа) gas

Pipe

km

5.0

92000

Flooding rescue,

pipeline in Novikov Street

D600 мм

life cycle is over

 

to Prokhladniy Lane

 

 

 

 

 

 

 

 

 

 

 

 

 

Reconstructionofamedium-

Pipe

 

 

 

 

 

pressure (0.3 МPа) gas pipe-

 

73

 

End of a diving

11

D426 mm,

km

65000

lineinKommunarovStreet

440

examination

 

usingpolymermaterials

377 mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transpositionofalow-

Pipe

 

0.2

 

Increase the

12

pressuregaspipelineinBru-

D273 mm,

km

2000

pressure up to

0.2

 

silov-Volgogradskayastreets

219 mm

 

 

the nominal one

 

 

 

 

 

 

 

 

 

 

 

 

Cross-feeding of a high-

 

 

 

 

 

 

pressure (0.6 МPа) gas pi-

 

 

 

 

 

 

peline, D325mm, Podgor-

Valve

 

 

 

Reliable

13

noe, with a high-pressure

units

2

205

D325 mm

gas supply

 

(0.6 МPа) gas pipeline,

 

 

 

 

 

 

 

 

 

 

D530mm (GRS-4, Yamnoe

 

 

 

 

 

 

— VKBR)

 

 

 

 

 

 

 

 

 

 

 

 

34

Issue № 4 (40), 2018

ISSN 2542-0526

 

 

 

 

 

 

Table 5 continued

 

 

 

 

 

 

 

 

 

 

 

 

Approximate

 

Object

Materials

Measure-

Amount

estimatecost,

Cause

and equipment

ment units

thousand

 

 

 

 

 

roubles

 

 

 

 

 

 

 

 

 

Cross-feeding of a low-pres-

 

 

 

 

 

 

sure gas pipeline D-89 mm

Pipe

 

 

 

Reliable gas

14

inNovikovStreetwithalow-

D108 mm

km

0.2

500

supply. Increase

 

pressure gas pipeline

CRS — 1

 

 

 

 

 

 

 

the pressure up

 

D108mminSavrasovStreet

 

 

 

 

 

 

 

 

 

to the nominal

 

 

 

 

 

 

 

Cross-feeding of a low-

 

 

 

 

 

Pipe

 

 

 

one

15

pressure gas pipeline along

km

0.3

450

D108 mm

 

 

Serafimovich Street

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

Reconstruction of the GRS

GRS

units

25

50000

Providing non-

(2015—2030)

stop and emer-

 

 

 

 

 

 

gency-free gas

 

Reconstruction of the CRS

 

 

 

 

17

CRS

units

50

11000

supply of the

 

(2010—2015)

 

 

 

 

city’s users

 

 

 

 

 

 

 

 

 

 

 

 

 

18

Low-pressure gas pipeline,

Pipe

running

200

600

 

Brusilov Street

D219 mm

meter

Providing

 

 

 

 

 

 

reliability

19

Low-pressure gas pipeline,

Pipe

running

200

600

 

Volgogradskaya Street

D273 mm

meter

 

 

 

 

 

 

 

 

 

In the existing

 

 

 

 

 

 

GRSs according

 

 

 

 

 

 

to the require-

20

Telemetry of the GRS

 

units

100

16000

ments of The

 

 

 

 

 

 

Construction

 

 

 

 

 

 

StandardsandRe-

 

 

 

 

 

 

gulations(СНиП)

 

 

 

 

 

 

42-01-2002

 

 

 

 

 

 

 

 

Reconstruction of the GRS:

 

 

 

 

 

 

Yeremeev Street; 11, 39, 44

 

 

 

 

Providing non-

 

Voroshilov; 134 Dimitrov;

 

 

 

 

stop and emer-

21

171 Kraznoznamennaya;

GRS

units

10

18000

gency-free gas

 

124 Devyatoe January;

 

 

 

 

supply of the

 

107,24,179LeninskiyAve-

 

 

 

 

city’s users

 

nue; 3 Chaikovskiy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction Wave

 

 

 

 

 

 

 

 

 

 

 

Maintenance of the gas pi-

 

 

 

 

For timely detec-

22

pelines of over 39 years old

 

km

43.78

1080

tion of defects

 

 

 

 

 

 

and damage

 

 

 

 

 

 

 

23

Replacement of the gas pi-

––

km

452

450000

Prevention

 

pelines of over 50 years old

 

 

 

 

of emergencies

35

Russian Journal of Building Construction and Architecture

 

 

 

 

 

 

End of Table 5

 

 

 

 

 

 

 

 

 

 

 

 

Approximate

 

Object

Materials

Measure-

Amount

estimatecost,

Cause

 

 

and equipment

ment units

 

thousand

 

 

 

 

 

 

roubles

 

 

 

 

 

 

 

 

 

Replacement of the GRSs

 

 

 

 

For defect-free

24

that are over 30 years old

––

units

117

9300000

performance

 

 

 

 

 

 

of networks

 

 

 

 

 

 

 

25

A low-pressure gas pipeline

Pipes with pro-

km

216

324000

 

in Ostrogozhskaya Street

ject diameters

 

 

 

 

 

 

 

 

 

A low-pressure gas pipeline

 

 

 

 

 

26

in Antonov-Ovseenko Street

Pipes with pro-

km

100

150000

 

 

considering the intrahouse

ject diameters

 

 

 

 

 

systems and equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pressu-

 

 

 

 

 

27

regaspipelineintheZhelez-

Pipes with pro-

km

77

11660000

 

nodorozhniy district consid-

ject diameters

 

 

ering the intrahouse systems

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pres-

 

 

 

 

 

 

sure gas pipeline in the Le-

Pipes with pro-

 

 

 

 

28

voberezhniy district consid-

km

1271

11442000

 

 

ering the intrahouse systems

ject diameters

 

 

 

 

 

and equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pressu-

 

 

 

 

New

 

regaspipelineintheCentral

Pipes with pro-

 

 

 

29

km

313

2820000

construction

 

districtconsideringtheintra-

ject diameters

 

 

 

 

 

housesystemsandequipment

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pres-

 

 

 

 

 

 

sure gas pipeline in the Le-

Pipes with pro-

 

 

 

 

30

ninskiy district considering

km

50

450000

 

 

the intrahouse systems and

ject diameters

 

 

 

 

 

equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pressu-

 

 

 

 

 

 

re gas pipeline in the Sovet-

Pipes with pro-

 

 

 

 

31

skiy district considering the

km

550

4950000

 

 

intrahouse systems and

ject diameters

 

 

 

 

 

 

 

 

 

 

 

equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

A mediumand low-pressu-

Pipes with pro-

 

 

 

 

32

re gas pipeline considering

ject diameters

km

142

1278000

 

 

the intrahouse systems and

 

 

 

 

 

 

equipment

 

 

 

 

 

 

 

 

 

 

 

 

 

TOTAL

 

 

 

32012165

 

 

 

 

 

 

 

 

36

Issue № 4 (40), 2018

ISSN 2542-0526

Conclusions

1.Therefore the paper looked at the current state of the gas supply system in Voronezh in detail. The authors have come up with a series of comprehensive measures for implanting “The Strategies of Social and Economiс Development of the Voronezh Region Up To 2035”. The above measurements generated by a new construction [10, 11], increased reliability of the gas pipelines, requirements for emergency-free [15] and continuous operation of the areas of the gas network are the outcomes of the collection of the statistical data on the gas supply in the city of Voronezh from 2011 to 2017.

2.All of the suggested measures have been agreed on and taken on board by Ltd. “Gazprom Gas Distribution Voronezh”. The proposed series of measures is essential for implementing the program by the Department of Economic Development of the Voronezh region “Strategies of Social and Economic Development of the Voronezh Region Up to 2035”.

References

1.Aldalis Kh., Panov M. Ya., Martynenko G. N. Drossel'nye kharakteristiki v oblasti obratnogo analiza gorodskikh sistem gazosnabzheniya [Throttle characteristics in the field of reverse analysis of urban gas supply systems]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2009, no. 1, pp. 43—49.

2.Kitaev D. N. Razvitie sistemy teplosnabzheniya gorodskogo okruga gorod Voronezh v dolgosrochnoy perspektive [Development of heat supply system of Voronezh city district in the long term]. Nauchnyy zhurnal. Inzhenernye sistemy i sooruzheniya, 2010, no. 2, pp. 72—77.

3.Martynenko G. N., Panov M. Ya., Dmitriev I. A. Algoritm identifikatsii gidravlicheskikh kharakteristik upravlyaemykh drosseley na vetvyakh strukturnogo grafa abonentskikh podsistem [The algorithm for identifying the hydraulic characteristics of the controllable throttles in the branches of the structural graph of subscriber subsystems]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2008, no. 3, pp. 100—105.

4.Martynenko G. N., Panov M. Ya. Analiz sushchestvuyushchey skhemy upravleniya gazopotokami v gorodskikh sistemakh gazosnabzheniya i perspektivy ee razvitiya v ramkakh operativnogo upravleniya [Analysis of the existing scheme of cargo traffic management in urban gas supply systems and prospects for its development in the framework of operational management]. Nauchnyy vestnik Voronezhskogo GASU. Ser.: Inzhenernye sistemy zdaniy i sooruzheniy, 2005, no. 2, pp. 23—26.

5.Martynenko G. N. Modelirovanie protsessov operativnogo upravleniya gorodskimi sistemami gazosnabzheniya na osnove faktornogo analiza. Dis. kand. tekhn. nauk [Modeling of operational management processes of urban gas supply systems based on factor analysis. Cand. eng. sci. diss.]. Voronezh, VGASU, 2004. 182 p.

6.Martynenko G. N., Gnatyuk S. N. Operativnoe upravlenie gazoraspredelitel'noy sistemoy na osnove modeli vozmushchennogo sostoyaniya [Operational control of the gas distribution system based on the perturbed state model]. Nauchnyy zhurnal. Inzhenernye sistemy i sooruzheniya, 2012, no. 1 (6), pp. 36—42.

37

Russian Journal of Building Construction and Architecture

7.Mel'kumov V. N., Kuznetsova G. A., Kobelev A. N. Ispol'zovanie klasternogo analiza dlya povysheniya nadezhnosti inzhenernykh setey [The use of cluster analysis to improve the reliability of engineering networks].

Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, vol. 8, no. 11, pp. 141—145.

8.Mel'kumov V. N., Kuznetsov I. S., Kobelev V. N. Metod postroeniya optimal'noy struktury teplovykh setey [The method of constructing the optimal structure of heat networks]. Vestnik MGSU, 2011, no. 7, pp. 549—553.

9.Mel'kumov V. N., Chuykin S. V., Papshitskiy A. M., Sklyarov K. A. Modelirovanie struktury inzhenernykh setey pri territorial'nom planirovanii goroda [Modeling the structure of engineering networks in the territorial planning of the city]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2015, no. 2 (38), pp. 41—48.

10.Mel'kumov V. N., Kuznetsov I. S., Kuznetsov R. N. Opredelenie optimal'nogo marshruta trassy gazoprovoda na osnove kart stoimosti vliyayushchikh faktorov [Determination of the optimal route of the pipeline route on the basis of cost maps of influencing factors]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2009, no. 1, pp. 21—27.

11.Mel'kumov V. N., Kuznetsov I. S., Kuznetsov R. N., Gorskikh A. A. Razrabotka metoda opredeleniya optimal'nogo marshruta prokladki gazoprovoda na osnove geneticheskikh algoritmov [Development of a method for determining the optimal route of the pipeline on the basis of genetic algorithms]. Privolzhskiy nauchnyy zhurnal, 2009, no. 3, pp. 69—74.

12.Mikhaylova E. O., Kitaev D. N. Prognozirovanie gidravlicheskikh kharakteristik gazoprovodnykh setey na gazoraspredelitel'nykh punktakh [Prediction of the hydraulic characteristics of the pipeline networks for gas distribution points]. Gradostroitel'stvo. Infrastruktura. Kommunikatsii, 2017, no. 3 (8), pp. 23—29.

13.Panov M. Ya., Martynenko G. N., Kolosov A. I. Operativnoe upravlenie na osnove vozmushchennogo sostoyaniya gorodskoy sistemy gazosnabzheniya [Operational management based on the disturbed state of the city gas supply system]. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arkhitektura, 2016, no. 4 (44), pp. 48—55.

14.Panov M. Ya., Martynenko G. N., Aldalis Kh. Upravlenie sistemami gazosnabzheniya s uzlovoy skhemoy otbora putevoy nagruzki [Management of gas supply systems with a nodal scheme of track load selection].

Gazovaya promyshlennost', 2009, no. 8, pp. 75—77.

15.Priputnev D. A., Mal'tsev I. N., Luk'yanenko V. I., Chuykov A. M. [Ecological monitoring of the environment]. Problemy obespecheniya bezopasnosti pri likvidatsii posledstviy chrezvychaynykh situatsiy [Problems of safety in emergency response], 2015, vol. 1, pp. 182—185.

16.Semenov V. N., Astanin V. I., Ovsyannikov A. S. e.a. Perspektivy razvitiya regional'nogo zhilishchnogo stroitel'stva na primere Voronezhskoy oblasti [Prospects of development of regional housing construction on the example of the Voronezh region]. Voronezh, VGASU, 2011. 139 p.

17.Shcherbakov V. I., Panov M. Ya., Kvasov I. S. Analiz, optimal'nyy sintez i renovatsiya gorodskikh sistem vodosnabzheniya i gazosnabzheniya [Analysis, optimal synthesis and renovation of urban water and gas supply systems]. Voronezh, VGASU, 2001. 304 p.

18.Babonneau F., Nesterov Y., Vial J.-P. Design and Operations of Gas Transmission Networks. Operations Research, 2012, no. 60 (1), pp. 34—47.

38

Issue № 4 (40), 2018

ISSN 2542-0526

19. Panov M. Ya., Martynenko G. N., Kolosov A. I. Prompt Management on the Basis of the Disturbed State of the Urban Gas Supply System. Russian Journal of Building Construction and Architecture, 2017, no. 1 (33), pp. 23—30.

20.R´ıos-Mercado R. Z., Kim S., Boyd E. A. Efficient Operation of Natural Gas Transmission Systems: a Net- work-Based Heuristic for Cyclic Structures. Computers & Operations Research, 2006, no. 33 (8), pp. 2323—2351.

21.Sanaye S., Mahmoudimehr J. Optimal Design of a Natural Gas Transmission Network Layout. Chemical Engineering Research & Design, 2013, no. 91 (12), pp. 2465—2476.

22.Tawarmalani M., Sahinidis N. V. Global Optimization of Mixed-Integer Nonlinear Programs: Atheoretical and Computational Study. Mathematical Programming, 2004, no. 99 (3), pp. 563—591.

23.Woldeyohannes A. D., Majid M. A. A. Simulation Model for Natural Gas Transmission Pipe-Line Network System. Simulation Modeling Practices and Theory, 2011, no. 19 (1), pp. 196—212.

24.Hadia N. M. A., Ryabtsev S. V., Seredin P. V., Domashevskaya E. P. Effect of the temperatures on structural and optical properties of tin oxide (SnOx) powder. Physica B-condensed Matter, 2009, vol. 405, iss. 1, pp. 313––

317.doi: 10.1016/j.physb.2009.08.082.

39

Russian Journal of Building Construction and Architecture

UDC662.99 : 004.42

N. A. Petrikeeva1, D. M. Chudinov2, Ye. A. Kopytina3, O. A. Sotnikova4

VERSION OF THE SOLUTION

OF THE PROBLEM OF OPTIMIZATION OF THICKNESS

OF THE HEAT-INSULATION LAYER IN HEAT SUPPLY

Voronezh State Technical University

Russia, Voronezh

1PhD in Engineering, Assoc. Prof. of the Dept. of Heat and Gas Supply and Oil and Gas Business, tel.: (473)271-53-21, e-mail: petrikeeva.nat@yandex.ru

2PhD in Engineering, Assoc. Prof. of the Dept. of Heat and Gas Supply and Oil and Gas Business, tel.: (473)271-53-21, e-mail: dmch_@mail.ru

4D. Sc. in Engineering, Prof., Head of the Dept. of Designing of Buildings and Structures Named after N. V. Troitskii,

tel. (473)277-43-39, e-mail: ksenija.sotnikova@yandex.ru Voronezh State University

Russia, Voronezh

3PhD student of Dept. of Information Technologies of Management, tel.: +7-952-101-72-96, e-mail: zhemkaterina@yandex.ru

Statement of the problem. With an increase in the thickness of isolation costs of a construction and operation of the heat-insulated pipeline increase as well. At the same time heat losses, and thus annual costs of the lost warmth decrease. The solution of a task comes down to the minimization of the function of expenses of a working option.

Results. In the paper the optimum thickness of thermal isolation of a water heating system taking into account the criterion of the minimum value of the specific given expenses with use of the known algorithm is determined. As the problem of optimization depends on a large number of variables, it is expedient to solve it using software.

Conclusions. One of the options for calculating the optimum thickness of thermal isolation on the computer by means of the program for the work with the spreadsheets Microsoft Excel including VBA macroprogramming language is offered. The results received during the work with the program can be used for further engineering calculations.

Keywords: thermal isolation, search of an optimal solution, thermal networks, software, algorithm, macroprogramming language.

Introduction. For identifying the directions for the middle and long-term development of a country’s fuel and energy complex for their comprehensive comparative assessment, it is

© Petrikeeva N. A., Chudinov D. M., Kopytina Ye. A., Sotnikova O. A., 2018

40

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]