
- •1. Предмет и задачи неорганической химии. Роль в системе естественных наук
- •3. Основные стехиометрические законы
- •4. Важнейшие классы и номенклатура неорганических веществ
- •5. Развитие учения о строении атома
- •6. Строение электронных оболочек атомов
- •7. Периодическая система элементов как форма отражения периодического закона
- •8. Периодичность свойств химических элементов
- •9. Основные типы химической связи
- •10. Ковалентная химическая связь. Основные положения метода валентных связей
- •11. Геометрия структур с ковалентным типом связи
- •12. Основы метода молекулярных орбиталей
- •13. Ионная и металлическая связь
- •14. Водородная связь
- •15. Кристаллическое, жидкое и аморфное состояние веществ
- •16. Скорость химических реакций. Константа скорости и ее физический смысл
- •17. Влияние температуры на скорость химической реакции. Основные положения теории активации Аррениуса
- •18. Влияние катализатора на скорость химической реакции
- •19. Химическое равновение. Принцип Ле-Шаталье
- •20. Основы химической термодинамики. Энтальпия системы
- •21. Понятие об энтропии
- •22. Соотношение между величиной изменения энергии Гиббса и величинами энтропии и энтальпии
- •23. Дисперсные системы. Коллоидные растворы
- •24. Растворимость веществ
- •25. Состав растворов. Способы выражения состава растворов
- •26. Основные положения теории электролитической диссоциации
- •27. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации
- •28. Теория сильных электролитов. Истинная и кажущаяся степень диссоциации сильных электролитов
- •29. Основания, кислоты и соли с точки зрения теории электролитической диссоциации
- •30. Обменные реакции в растворах электролитов
- •31. Условия образования и растворения осадков
- •1) Условие выпадения осадка:
- •2) Условие растворения осадка:
- •32. Диссоциация воды. Константа диссоциации, ионное произведение воды
- •33. Гидролиз солей. Механизм гидролиза
- •34. Окислительно-восстановительные реакции. Основные типы окислительно-восстановительных реакций
- •35. Принцип электронного баланса
- •36. Метод полуреакций
- •37. Электрохимические процессы. Эдс гальванического элемента
- •38. Стандартные электродные потенциалы. Уравнение Нернста
- •39. Электрохимический ряд напряженности металлов
- •40. Электролиз водных растворов и расплавов
- •41. Химические процессы, протекающие на электродах
- •42. Основные положения координационной теории
- •43. Строение комплексного соединения
- •44. Устойчивость комплексных соединений
- •45. Водород и его свойства
- •46. Элементы VII а группы. Их характеристика
- •47. Галогены. Общая характеристика галогенов
- •48. Характер химической связи в молекулах галогенов. Их физические и химические свойства
- •49. Галогенводороды. Физические и химические свойства
- •50. Кислородсодержащие соединения галогенов
- •51. Общая характеристика элементов via группы (халькогены)
- •52. Физические свойства халькогенов
- •53. Химические свойства простых веществ (халькогенов)
- •54. Физические и химические свойства гидридов типа h2э в ряду h2o – h2Te
- •55. Соединения кислорода с водородом. Их свойства, общие принципы получения, применение
- •56. Кислые и средние халькогениды. Их свойства, общие принципы получения, применение
- •57. Оксиды халькогенов, их свойства, принципы получения, применение
- •58. Сернистая, селенистая, теллуристая кислоты. Строение, свойства и их солей
- •59. Серная, селеновая, теллуровая кислоты. Строение, свойства и их солей
- •60. Свойства разбавленной и концентрированной серной кислоты. Олеум. Соли и их практическое применение
- •61. Сульфаты и гидросульфаты. Купоросы и квасцы. Их применение
- •62. Полисерные, перексосерные, политионовые кислоты. Химические свойства. Соли и их практическое применение.
- •63. Общая характеристика элементовVa группы.
- •65. Гидриды типа эн3 элементов va группы.
- •66. Аммиак, его физические и химические свойства.
- •67. Оксиды азота, строение их молекул, химические свойства, способы получения, применение.
- •68. Азотистая кислота, ее соли.
- •69. Азотная кислота и ее соли.
- •I. Кислотно-основные свойства.
- •II. Окислительно-восстановительные свойства.
- •70. Кислородсодержащие соединения фосфора.
- •71. Кислородсодержащие кислоты фосфора и их соли.
- •Метафосфорная кислота
- •Ортофосфорная кислота h3po4
- •Полифосфорная кислота
- •Фосфористая кислота h3po3
- •72. Общая характеристика элементов ivа группы.
- •73. Строение и свойства простых веществ элементов ivа группы
- •74. Гидриды типы эн4 в ряду сн4 – PbH4
- •75. Кислород содержащие соединения углерода
- •76. Угольная кислота и ее соли
- •77. Кислородсодержащие соединения кремния
- •78. Кремневые кислоты и их соли
- •79. Общая характеристика металлов
- •80. Щелочные металлы. Их физические и химические свойства
- •81. Общая характеристика и свойства оксидов, пероксидов, гидроксидов и солей щелочных металлов.
- •82. Щелочноземельные металлы. Общая характеристика элементов. Физические и химические свойства простых веществ.
- •83. Общая характеристика оксидов, гидроксидов, солей элементов iiа группы.
- •84. Алюминий, его физические и химические свойства. Амфотерность алюминия. Алюминаты. Получение алюминия и его солей.
- •85. Металлы ivа группы. Сопоставление их физических и химических свойств со свойствами углерода и кремния.
- •86. Общая характеристика p- элементов. Физические и химические свойства простых веществ.
- •87. Общая характеристика элементов групп меди и цинка.
- •88. Общая характеристика элементов группы хрома.
- •89. Общая характеристика элементов группы марганца.
- •90. Общая характеристика элементов семейства железа.
58. Сернистая, селенистая, теллуристая кислоты. Строение, свойства и их солей
Сила кислот (в свободном состоянии выделена лишь Н2SeO3, свойства Н2SO3 и Н2TeO3, оцениваются по свойствам соответствующих полей) уменьшается в ряду Н2SO3 - Н2SeO3 - Н2TeO3. В отличие от селенитов и теллуритов сернистая кислота и ее соли обладают выраженными восстановительными свойствами. Сульфиты в водных растворах медленно окисляются кислородом воздуха: 2SO32- + О2 SO42- (аналогичная реакция, катализируемая оксидом азота NO, в атмосфере служит источником кислотных дождей).
Сернистая кислота действует как мягкий восстановитель в многочисленных реакциях с солями металлов:
Fe2(SO4)3 + SO2 + 2H2O 2FeSO4 + 2H2SO4
У селенистой и теллуристой кислот восстановительные свойства выражены слабее, то есть окислить их до производных Se(VI) и Te(VI) значительно труднее.
окислительные свойства H2TeO3 выражены сильнее, чем у сернистой кислоты. Соединения Se(IV) проявляют более сильные окислительные свойства, чем соединения S(IV) и Te(IV). Например, водный раствор SO2 восстанавливает селенистую кислоту: H2SeO3 + 2 SO2 + H2O Se + 2H2SO4 . Аналогично протекает реакция с H2TeO3.
59. Серная, селеновая, теллуровая кислоты. Строение, свойства и их солей
H2SO4 – бесцветная маслянистая жидкость, летучая, смешивается с водой в любфх отношених.
Оксокислоты халькогенов (VI) H2SO4, H2SeO4 и H6TeO6 синтезируют окислением их диоксидов (или соответствующих им кислот):
H2SeO3 +
Н2О2
H2SeO4 +
Н2О
5TeO2 + 2KMnO4 + 6HNO3 + 12 Н2О 5H6TeO6 + 2KNO3 + 2Mn(NO3)2 ,
а также окислением простых веществ сильными окислителями:
5Te + 6HClO3 + 12H2O 5H6TeO6 + 3Cl2 ,
или обменными реакциями:
BaTeO4 + H2SO4 + 2H2O H6TeO6 + BaSO4.
В молекуле H2SO4 сера тетраэдрически окружена двумя гидроксильными (ОН) группами и двумя атомами кислорода. Бесцветные, похожие на лед кристаллы H2SO4 имеют слоистую структуру, в которой каждая молекула H2SO4 соединена с четырьмя соседними молекулами прочными водородными связями, образуя единый пространственный каркас. При температуре 10.48оС H2SO4 плавится с образованием тяжелой маслянистой жидкости, кипящей при 280оС. У жидкой H2SO4 структура почти такая же, как у твердой, только целостность пространственного каркаса нарушена, и его можно представить как совокупность микрокристалликов, постоянно меняющих свою форму. H2SO4 смешивается с водой в любых соотношениях, что сопровождается образованием гидратов H2SO4. n H2O. Теплота гидратации настолько велика, что смесь может даже закипеть.
Жидкая H2SO4 удивительно похожа на воду со всеми структурными особенностями и аномалиями. Здесь та же система сильных водородных связей, что и в воде, почти такой же прочный пространственный каркас, такие же аномально высокие вязкость, поверхностное натяжение, температуры плавления и кипения.
Серная и селеновая кислоты являются сильными двухосновными кислотами и близки по структуре и свойствам между собой.
Строение ортотеллуровой кислоты H6TeO6 отличается от строения серной и селеновой кислот. Кристаллическая структура твердой H6TeO6 построена из молекул правильной октаэдрической формы, которые сохраняют свою форму и в растворах. Селеновая кислота более сильный окислитель, чем Н2SO4 и Н6ТеО6. Она растворяет без нагревания Cu и даже Au:
2Au + 6H2SеO4 Au2(SeO4)3 + 3 H2SeO3 + 2H2O,
окисляет ионы галогенидов, кроме фторида, до свободных галогенов, под ее действием воспламеняется клетчатка. Ортотеллуровая кислота также более сильный окислитель, чем серная кислота. Наиболее частым продуктом восстановления H2SeO4 и H6TeO6 являются простые вещества.
Серная кислота обладает сильными окислительными свойствами только в концентрированном виде и при нагревании:
Cu
+ 2 H2SO4
CuSO4 +
SO2 + 2H2O .
Продуктами
ее восстановления в зависимости от
условий проведения реакций могут быть
SO2 (при избытке H2SO4), H2S, S,
,
политионаты (при недостатке H2SO4).
H2SеO4, например, выделяет хлор из концентрированной HCl:
H2SеO4 + 2HCl = =Cl2 + H2SeO3 + H2O.