Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебное пособие 800637

.pdf
Скачиваний:
3
Добавлен:
01.05.2022
Размер:
10.76 Mб
Скачать

 

 

156 K

 

''

 

 

 

166 K

170 K

 

 

6,4

)

 

b)

 

 

 

 

 

0,0170

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

6,2

1

158 K

0,0165

 

 

 

168 K

 

 

 

 

 

 

 

 

 

 

6,0

 

160 K

0,0160

 

 

 

166 K

 

 

 

 

 

 

 

 

 

 

1

 

2

164 K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

5,8

3

 

0,0155

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

4

 

200 T, K

 

 

 

 

 

 

 

 

 

100

150

100

 

 

150

 

200

T, K

 

 

.

 

 

/

(

)

// (b)

 

 

 

 

 

 

5 (1), 10 (2), 50 (3)

 

500 (4)

 

 

 

 

 

 

 

,

,

-

 

 

 

 

 

 

= 0·exp[U/k(T - T0)],

 

(1)

0

,

 

 

 

 

U, k

,

0

,

 

 

 

 

 

.

-

: 0

0,3 10-13

, U 0,03

T0 149 .

 

 

-

 

(148,3

),

[1]

T0

 

Rb2ZnCl4.

-

.

,

 

 

 

 

 

 

 

 

1.

 

.

 

Rb2ZnCl4

 

2.

 

 

*,

,

 

 

 

.

3.

.

1.

.

.,

. .,

. .

Rb2ZnCl4

150

//

. 1997. -

. 42. - № 4. - . 730 - 734.

537.9

 

 

 

 

 

 

 

 

Bi2Ti2O7

 

. .

 

1, . .

 

2, . .

3, . .

4

 

 

1

.

.-

.

, mvtalanov@gmail.com

 

 

 

 

 

 

2

-

.

, aabush@yandex.ru

 

 

 

 

3

.

.

, valkame@yandex.ru

 

 

 

 

 

 

 

 

 

4 -

.-

 

, isa@angstrom.uu.se

»

 

 

1

 

«

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,3

 

. . .

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bi2Ti2O7

 

 

4.2 – 1000 K

25 – 106

.

,

 

 

 

 

 

Bi2Ti2O7

T ≈ 200 K,

120

 

 

-

 

 

,

 

 

 

 

 

.

 

 

 

-

,

 

 

,

 

 

 

 

.

 

 

 

 

:

,

 

 

,

 

 

 

.

 

 

 

 

Bi2Ti2O7

 

 

 

 

 

 

 

,

-

 

 

 

1969

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

[1,2].

 

 

 

 

 

 

 

 

 

(

~ 100),

 

-

 

 

 

,

 

 

 

 

 

,

.

 

-

 

 

 

 

 

 

 

 

 

 

 

-

 

~ 200 K,

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3].

 

 

 

,

Bi2Ti2O7

 

 

 

 

,

 

 

 

,

 

[4].

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

Bi2Ti2O7.

 

 

 

[4]

 

 

 

 

 

 

 

 

-

,

,

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

-

 

 

 

 

Bi1.5Zn0.92Nb1.5O6.92 [5].

 

 

 

 

 

,

 

 

-

 

 

 

 

 

 

 

 

-

 

 

 

-

 

 

 

[6].

 

,

 

 

,

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

,

 

 

 

-

 

 

 

 

 

 

 

 

.

 

Bi2Ti2O7

 

-

 

 

 

 

 

-

 

 

 

 

 

 

 

 

(1-x)Bi2O3xTiO2,

x

0.6

 

 

 

1200

900

-

 

 

.

 

 

 

 

 

 

 

 

 

7.5

/

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

,

 

10

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bi2Ti2O7

 

7-20 (

.

«

»,

)

 

 

25 – 106

-

 

 

 

 

 

 

 

 

 

 

4.2 – 1000 K.

 

 

 

 

 

 

 

 

-

 

-

 

 

 

 

 

 

 

 

 

 

 

T≈200 K,

 

 

 

 

 

 

,

 

 

 

-

 

 

[4,6].

 

 

 

 

116 (

 

f = 500

), tan

< 0.01,

 

 

 

 

 

 

 

 

,

= 115 [4].

-

 

 

 

:

 

 

 

10

 

 

 

 

-

 

 

 

T > 200 K,

 

 

 

[5].

 

 

f

 

-

(f)

 

 

(Tm)

 

 

 

50 K.

 

 

 

 

Tm

 

 

(1)

 

 

 

f0 ~ 1025).

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

-

 

)

 

 

 

 

 

( R2 = 0.994, R -

.

 

 

 

 

 

 

 

 

-

-

 

 

-

.

 

 

 

 

 

 

Bi2Ti2O7

 

 

 

 

 

 

№3.1099.2017/

 

 

(

 

 

 

 

 

 

 

 

 

 

 

. .),

 

18-72-00030 (

 

 

. .).

 

 

 

 

 

121

1.Knop O. Pyrochlores V.Thermoanalytic, X-ray, neutron, infrared, and dielectric studies of A2Ti2O7 titanates / O. Knop, F. Brisse, L. Castelliz // Can J Chem. 1969. - V. 47. - P. 971990.

2.Bencina M. Bi2Ti2O7-based pyrochlore nanoparticles and their superior photocatalytic activity under visible light / M. Bencina, M. Valant // J. Amer. Ceram. Soc. 2018. - V. 101. - P. 8290.

3.Yordanov S.P. Dielectric properties of the ferroelectric Bi2Ti2O7 ceramics / S.P. Yordanov, I. Ivanov, Ch. P. Carapanov // J. Phys. D: Appl. Phys. 1998. - V. 31. - P. 800806.

4.Esquivel-Elizondo J.R. Bi2Ti2O7: It Is Not What You Have Read / J.R. Esquivel-Elizondo, B.B. Hinojosa, J.C. Nino // Chem. Mater. 2011. - V. 23. - P. 49654974.

5.Nino J.C. Correlation between infrared phonon modes and dielectric relaxation in Bi2O3ZnONb2O5 cubic pyrochlore / J. C. Nino, M. T. Lanagan, C. A. Randall, S. Kamba // Appl. Phys. Lett. 2002. - V. 81. - P. 44044406.

6.Turner C.G. Dielectric Properties and Relaxation of Bi2Ti2O7 / C.G. Turner, J.R. EsquivelElizondo, J.C. Nino // J. Amer. Ceram. Soc. 2014. - V. 97. - P. 17631768.

UDC 538.9

THE STUDY OF PHONON DYNAMICS IN RELAXOR

FERROELECTRIC PbNi1/3Nb2/3O3

A.I. Fedoseev1, S.G. Lushnikov2, V.G. Zalesskii3, R.S. Katyiar4, J.-H. Ko5 1Senior researcher, fedoseev@mail.ioffe.ru

2Doctor of sciences, professor, sergey.lushnikov@mail.ioffe.ru

3Senior researcher, nsh@mail.ioffe.ru

4Doctor of sciences, professor, ram.katiyar@upr.edu

5Doctor of sciences, professor, hwangko@hallym.ac.kr

1,2,3Ioffe Institute, St.-Petersburg, Russia

4Physics Department, University of Puerto Rico, San Juan, PR 00931-3343 USA 5School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym

University, Hallym, Korea

Detailed temperature studies of the dielectric responce, conductivity, Brillouin and Raman spectra are presented in this work. Analysis of the obtained data revealed a number of anomalies in the phonon dynamics of the relaxor ferroelectric PbNi1/3Nb2/3O3 (PNN), which are not found in typical relaxor ferroelectrics, such as PbMg1/3Nb2/3O3 (PMN).

Keywords: dielectric permittivity, local and bulk conductivity, optical and acoustic phonons, quasi-elastic light scattering.

PbNi1/3Nb2/3O3 (PNN) single crystals belong to the family of complex perovskites with the general formula 1- 3. The physical properties of this family of perovskites are the subject of intense research, but PNN crystals have been poorly studied, which can be explained by difficulties in synthesis of ceramics and growth of single crystals.

The lattice dynamics of the PNN crystal has been studied by dielectric spectroscopy [1], Brillouin and Raman light scattering [2,3] earlier. Raman light scattering experiments have confirmed the existence of polarized scattering spectra which change with temperature [3]. The behavior of low-frequency optical phonon is characterized by anomaly in the vicinity of the phase transition from cubic to a ferroelectric rhombohedral phase Tc ≈ 153 K [4]. A wide anomalies of the frequency shift (which is proportional to the velocity) and the full width at half maximum (FWHM, which is proportional to the attenuation) of longitudinal acoustic (LA) phonon are a characteristic features of relaxor ferroelectrics [2]. But in contrast to PbMg1/3Nb2/3O3 (PMN) - typical representative of relaxor ferroelectrics, the minimum in velocity and the maximum in attenuation in PNN do not correlate with the temperature of maximum in the dielectric permittivity Tm, which is equal to Tc. The temperature evolution of quasi-elastic light scattering (QELS) in PNN is nontrivial. Thus, in spite of a seeming similarity between the two compounds, PMN and PNN have different lattice dynamics. This moti-

122

vated our detailed studies of dielectric, Brilloun and Raman experiments in a wide temperature range 77-700 K.

The PNN single crystals were grown by solution in the melt. The dielectric response and ACconductivity were measured by a Good Will LCR-819 impedance-meter at the frequency range 12 Hz -100 kHz and at temperatures 78 -750 K. The DC-conductivity was measured by an electrometer with sensitivity up to 1 pA. In our measurements the maximum of the real permittivity at a frequency of 1 kHz reaches 'm = 5500 at Tm = 153 K and width of maximum is ΔT = 145 K (PMN, for comparison: 'm=11400, Tm= 265 K and ΔT = 80 K). A local conductivity due to the characteristics of the Ni atom was obtained in the temperature range 100200 K. At the temperature above 600 K an appreciable increase in bulk conductivity was found.

The temperature investigations of the light scattering spectra were carried out in the backscattering geometry by using an advanced Sandercock's (3+3)-tandem interferometer (TFP-2) for Brillouin measurements and the T64000 spectrophotometer for Raman study. Raman measurements showed the difference in the behavior of optic phonons of PNN and PMN crystals. The intensity of Raman spectra of PNN increases with decreasing temperature, at the same time new phonon lines appear. The "softening" of the frequency shift, the maxima of the intensity and full width at hath maximum (FWHM) of the low-lying optical phonon in the region Tc = 153 K are revealed. Unusual temperature dependences of quasi-elastic light scattering parameters are found. The maximum intensity of QELS is observed at the room temperature, while the anomaly of the FWHM of QELS is shifted to ~ 460 K.

When we compared the Brillouin spectra of the PNN and PMN crystals, discrepancies were also found. At temperatures above Tc in the PNN crystal, where cubic symmetry is assumed, at backscattering geometry of experiment with phonon wave vector along [001]- direction according to the selection rules only longitudinal acoustic phonon (LA) should be observed, as it was for PMN. However, we found additional transverse acoustic modes (TA) in the spectra of PNN, which are forbidden in Brillouin spectra by the selection rules for cubic symmetry. It can be assumed that the symmetry of the PNN crystal at these temperatures is different from cubic symmetry. It should also be noted, that two additional peaks were found in the temperature dependence of the FWHM of the LA phonon at temperatures T1 ~ 560 K and T2 ~ 440 K. These anomalies correspond to weak anomalies in the temperature dependence of the frequency shift of this phonon. In the low-temperature region, in the temperature range between T3 ~ 212 K and T4 ~ 130 K, there is a noticeable slowdown in the change in both the frequency shift and the FWHM of the LA phonon. As a result, their peak anomalies, which were expected at T for PNN crystal, were in fact suppressed. The results of measurements in PNN crystals are discussed in the framework of modern concepts of the physics of relaxor ferroelectrics.

Acknowledgment. This work was supported by Russian Foundation for Basic Research (Grant N18-502-51050).

References

1.V.A. Bokov and I.E. Mylnikova, Sov. Phys. Solid State 3, 613 (1961)

2.J. Fan, et al., J. Appl. Phys., 91, 2262 (2002)

3.J. Kano, H. Taniguchi, D. Fu, M. Itoh, S. Kojima, Ferroelectrics, 367, 67 (2008)

4.K. Kusumoto, T. Sekiya, Ferroelectrics, 240, 327-334 (2000).

123

537.9

3

.

,

,

.

,

,

-»,

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

(

. 1)

-

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

[1].

-

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

.

 

,

 

 

 

 

 

 

«

 

 

-

 

 

«

 

 

-

»

0,89PMN-0,11PZT

 

. .

1,

 

. .

2,

. .

3

 

 

 

1

-

.- .

 

 

,

, s_gridnev@mail.ru

 

 

 

 

 

2

 

 

, fominov2014@bk.ru

 

 

 

 

.

.-

.

,

 

 

, mad_nik@bk.ru

 

 

 

«

 

 

 

 

 

 

 

»

 

 

 

.

 

0,89PMN-0.11PZT

 

 

 

 

 

:

.

 

 

 

,

 

 

 

,

 

 

 

 

.

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

.

-

 

 

 

 

 

 

 

 

,

 

-

-

Bruker D2 Phaser.

.

.1.

.2.

α31

0,89PMN–0,11PZT

124

 

0,89PMN-0.11PZT

-

,

,

 

,

Mn0.4Zn0.6Fe2O4.

 

,

α31

-

 

( . 2),

 

 

-

.

1.

. .,

. .,

. .,

. .,

. .

-

//. 1984. . 26. № 2. . 378-381.

538.95

 

 

 

. .

 

1, . .

2, . .

3, . .

4

 

 

 

 

 

 

1

, wbeg@mail.ru

 

 

 

 

 

 

 

 

 

 

 

2

.

.-

.

,

 

, dmakarev@rambler.ru

 

 

 

 

 

 

 

 

 

 

3

, yfnfif_71@bk.ru

 

 

 

 

 

 

 

 

 

 

 

4 -

 

.-

.

,

 

, arybyanets@gmail.com

 

 

 

 

 

 

«

 

»

 

 

 

 

 

(

)

 

 

,

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

«

 

 

 

»

 

 

 

-

 

 

 

 

.

 

 

 

 

 

 

,

 

 

:

.

 

,

,

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

-

 

 

 

 

 

 

 

 

 

[1].

(

)

 

 

 

 

 

 

 

-

 

 

 

 

 

-

 

 

 

-

 

 

 

 

 

 

 

 

 

.

 

 

,

 

 

 

 

 

-

 

[2].

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

«

».

 

-

 

 

 

 

,

«

»

 

,

-

 

 

 

 

 

 

 

 

 

«

 

,

»,

 

«

»

 

-

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

-

 

 

 

[3].

 

 

 

[1, 2].

 

-

 

 

 

 

 

 

 

 

 

125

 

 

-

«

»

-

 

 

.

 

( )

 

 

 

( )

 

 

 

.

 

 

/

 

 

 

( )

( )

 

 

 

t

 

 

 

 

 

 

 

 

 

= 150 c

720 (

E

=12

/ )

(

-55)

 

 

 

 

 

 

 

 

 

-

 

 

,

 

 

 

 

 

-

«

»

 

 

 

:

 

 

 

 

 

 

 

 

-

«

»

 

 

-

 

 

 

 

 

,

 

;

 

 

 

«

»

 

 

 

 

 

-

 

 

-

 

 

 

 

(

 

 

 

 

).

(

 

 

 

 

 

).

 

12.5425.2017/8.9,

 

 

 

 

 

 

1.Rybyanets A.N. Characterization Techniques for Piezoelectric Materials and Devices / A.N. Rybyanets, A.A. Naumenko, N.A. Shvetsova // Nova Science Publishers Inc. - 2013. - Chapter 1. - P. 275-308.

2.Rybianets A. SAW Method for Measuring of Relaxation Process in Ferroelectric Ceramics / A. Rybianets // Proc. 2007 IEEE Ultrason. Symp. IUS. - 2007. - P. 1909-1912.

3.

 

. .

 

 

 

-

 

 

 

 

 

/ . .

, . . -

, . .

, . .

, . .

//

.

. -

2018. - .

82. - № 3. -

. 287-292.

 

 

 

 

537.9

 

 

 

 

 

 

 

 

-

 

. .

 

1, . .

 

2,

 

. .

3, . .

4, . .

5,

 

. .

 

6, . .

 

7,

. .

8, . .

9

 

 

1

-

.-

.

,

, vera@urfu.ru

 

 

 

2

,

 

 

, vyacheslav.fedorovyh@mail.ru

 

 

 

 

 

 

 

3 -

.-

.

,

 

 

 

, Chezganov.Dmitry@urfu.ru

126

 

 

 

4

,

-

 

, evgeny.vlasov@urfu.ru

 

 

 

 

 

 

 

 

 

 

5

-

.- .

 

,

 

 

, zelenovskiy@urfu.ru

 

 

 

 

6

 

 

, evgeny.greshnyakov@urfu.ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

, maxneb@urfu.ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 -

.-

.

,

, vladimir.shur@urfu.ru

 

 

 

 

 

«

 

 

 

 

. .

»

 

 

 

 

9

-

.

, .

., ivleva@ran.gpi.ru

 

 

 

 

 

 

 

 

 

. . .

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

-

 

,

 

 

 

 

,

 

.

 

.

 

-

 

 

 

:

 

 

,

 

,

 

 

 

 

 

 

 

-

 

 

,

 

 

 

,

 

 

,

 

.

 

 

 

 

 

 

 

 

 

 

-

 

(Sr0.61Ba0.39Nb2O6, SBN).

 

 

 

 

-

 

 

 

 

 

-

 

 

 

SBN

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

-

 

 

 

 

 

.

 

 

«

»,

-

 

 

 

 

 

(

 

) [1].

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

: (1)

Auriga Crossbeam (Carl Zeiss) [1].

 

-

100

; (2)

 

 

5×5

 

 

7

 

 

 

 

 

 

15

; (3)

 

 

 

 

 

7

.

 

 

 

 

 

Y

 

 

 

 

45

.

 

 

 

 

 

 

 

 

 

.

 

-

 

 

 

[2]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3].

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

.

 

 

-

 

 

 

 

 

 

,

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

-

 

 

 

 

 

 

 

 

 

,

-

 

.

 

 

 

 

 

 

 

 

-

 

 

 

(

 

 

100

/

2)

(

 

 

 

 

 

 

 

100

/

2).

 

 

 

 

 

 

-

 

300

/

2.

 

 

 

 

Y

 

-

 

,

 

,

.

 

45

,

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

.

 

 

 

 

.

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

-

127

.

.

 

 

 

 

«

-

»

.

 

(

19-72-00008).

 

1.Shur V.Ya. Domain patterning by electron beam of MgO doped lithium niobate covered by resist / V. Ya. Shur, D. S. Chezganov, A. R. Akhmatkhanov, D. K. Kuznetsov // Appl. Phys. Lett. 2015. - V. 106. – №. 23. – Art. no. 232902.

2.Zelenovskiy P.S. Micro-Raman visualization of domain structure in strontium barium nio-

bate single crystals / P. S. Zelenovskiy, V. A. Shikhova, A. V. Ievlev, M. M. Neradovskiy, V. Ya. Shur // Ferroelectrics. 2012. V. 439. – №. 1. – P. 33-39.

3.Sheng Y. Three-dimensional ferroelectric domain visualization by Cerenkov-type second

harmonic generation / Y. Sheng, A. Best, H.-J. Butt, W. Krolikowski, A. Arie, K. Koynov // Opt. Express. 2010. V. 18. – №. 16. – P. 16539-16545.

537.226.3

PIN-PMN-PT

 

.

 

 

. .- . .,

, shnaidshtein@physics.msu.ru

 

 

«

 

. .

»

 

 

,

-

 

.

 

-

(PMN)

(PT).

-

-

 

PMN-PT

.

,

,

 

 

.

 

,

-

,

 

49% -

 

 

, 27%

24%

(PIN).

-

,

 

 

-

 

 

 

.

.

 

-

 

,

-

 

 

 

,

 

-

 

.

 

-

 

,

 

-

,

.

 

 

PIN-PMN-PT,

 

 

-

,

.

 

-

 

 

 

.

 

 

 

128

IV.

UDC 537.622.6

OSCILLATORY DYNAMICS OF MAGNETIC RELAXATION IN Pt/Co/Ir/Co/Pt

SYNTHETIC ANTIFERROMAGNET

R.B.Morgunov1, A.I.Bezverhnii2, O.V.Koplak3

1Professor, morgunov2005@yandex.ru

2PhD student, bezverhnii.alex@gmail.com

3Head of laboratory, o.koplak@gmail.com

1,2,3Institute of Problems of Chemical Physics, 142432, Chernogolovka, Russia

1Immanuel Kant Baltic Federal University, 236016, Kaliningrad, Russia

1,2,3Tambov State Technical University, 392002, Tambov, Russia

Tuning of the thin layer thickness and temperature causes coincidence of the critical magnetic fields of the two or even three interstate transitions. Double coincidence results in non-monotonic single extreme magnetic relaxation, while triple point (coincidence of the three critical fields) causes oscillatory magnetic relaxation.

Keywords: synthetic antiferromagnets, domain walls, perpendicular anisotropy, magnetic relaxation, dynamical system, oscillations.

The spin valves and SAF are the simplest devices of spintronics. They consist of two ferromagnetic thin films of different thicknesses (~ 1 nm) and a non-magnetic spacer separating the films (Figure 1). Deliberately small thickness of the ferromagnetic layers (typically <

2 nm) provides the interface with a perpendicular anisotropy which dominates the bulk magnetic anisotropy. Ferromagnetic layers have either a single domain (at linear size ≤ 10 nm) or

a multi domain (at linear size > 100 nm) magnetic structure. Large SAFs are required as a spin-valve platform for the industry of the magnetic sensors applicable in the medical and biology analysis. The magnetization reversals and the dynamics of magnetic relaxation affect speed and critical field of the spin valve sensors and SAF structures [1, 2].

Fig.1. A sketch of the spin valve, with the denoted areas filled by AP+, APand P- domains

In this paper, we present a detailed study of the oscillating magnetic relaxation in the synthetic antiferromagnet (SAF) with two ferromagnetic Co layers of different thicknesses separated by an Ir spacer. The four stable magnetic states of the SAF are determined by the mutual alignment of magnetizations in the layers and are controlled by both the magnetic in-

terlayer exchange interaction and the Zeeman energy. The specific variations in the thicknesses of the layers and/or temperature allows the existence of a ‘triple point’, which corresponds

to a coincidence of the critical switching fields for two or three interstate transitions. In this case, two or even three different types of magnetization reversals occur simultaneously and competitively. The paper is dedicated to the description of the methods and exploration of the results of the experimental investigation regarding the reversal of the magnetization performed for that very case. A non-monotonic dependence of the domain wall speed on magnetic field H and an oscillating time dependence of magnetization M in a constant magnetic field were observed in a Pt/Co/Ir/Co/Pt synthetic antiferromagnet with perpendicular anisotropy

129