- •1. Электронные приборы как нелинейные сопротивления.
- •2. Характеристики газоразрядных (ионных) приборов.
- •3. Неоновая лампа, стабилитрон.
- •4. Тиратрон тлеющего разряда, тиратрон с накаленным катодом.
- •Тиратроны с накаливаемым катодом
- •5. Характеристики фотоэлектронных приборов.
- •6. Фотоэлементы.
- •7. Фоторезисторы.
- •8. Фотодиоды.
- •9. Нелинейные сопротивления на р-n переходах. Туннельный диод.
- •10. Обращенный диод, варикап.
- •11. Фототранзистор.
- •12. Тиристоры.
- •13. Нелинейные активные сопротивления, управляемые магнитным полем.
- •14. Эффект Холла.
- •15. Варисторы. Их вольт-амперные характеристики.
- •16. Терморезисторы и их вольт-амперные характеристики.
- •17. Свойства термисторов, их вольт-амперные характеристики.
- •18. Позисторы.
- •19. Электрическая дуга.
- •20. Нелинейные индуктивности и емкости.
- •21. Устройства на нелинейных индуктивностях.
- •22. Магнитный усилитель мощности
- •23. Характеристики ферромагнитных материалов.
- •24. Магнитомягкие и магнитотвердые материалы.
- •25. Потери, обусловленные гистерезисом и вихревыми токами.
- •26. Динамические петли гистерезиса.
- •27. Нелинейные конденсаторы – вариконды.
- •28. Антисегнетодиэлектрики.
- •29. Аппроксимация характеристик для мгновенных значений. Кусочно – линейная аппроксимация.
- •30. Аналитическая аппроксимация. Полиномиальная аппроксимация
- •31. Аппроксимация гистерезисной кривой.
- •32. Формирование нелинейных двухполюсников с заданными вах. Типичные нелинейности механических систем. Воспроизведение нелинейных зависимостей при использовании метода структурных моделей.
- •33. Формирование двухполюсников с заданными вах при использовании диодов и источников опорного напряжения.
- •34. Реализация вогнутых монотонных вах.
- •35. Реализация выпуклых монотонных вах.
- •36. Характеристики двухполюсников с туннельными диодами.
- •37. Встречные соединения двух туннельных диодов одинаковых с одинаковыми вах.
- •38. Многоступенчатые вах для средних за полпериода значений токов и напряжений.
- •39. Синтез нелинейных элементов с помощью новых схемных элементов. Свойства мутатора. Реализация мутаторов и их применения.
- •40. Синтез нелинейных элементов с помощью новых схемных элементов. Свойства и реализация скалоров. Некоторые применения нового элемента.
- •41. Синтез нелинейных элементов с помощью новых схемных элементов. Свойства и реализация рефлекторов и их применения.
- •42. Синтез нелинейных элементов с помощью новых схемных элементов. Свойства и реализация ротаторов и их применения.
- •43. Отрицательные дифференциальные параметры цепей. Причины образования отрицательных сопротивлений.
- •44. Методы получения отрицательных индуктивностей и емкостей.
- •45. Вах, вебер-амперные и кулон-вольтные характеристики s- и n-типов.
- •46. Возникновение падающих участков на характеристиках.
- •47. Двухполюсник с отрицательным входным сопротивлением.
- •48. Основы теории устойчивости. Виды устойчивости.
- •49. Исследование устойчивости в малом.
- •50. Исследование устойчивости в большом.
- •51. Исследование устойчивости по Ляпунову.
- •52. Фазовая плоскость, фазовые траектории.
8. Фотодиоды.
Фотодиод — это полупроводниковый фотоэлектрический прибор, основанный на внутреннем фотоэффекте, содержащий один p-n переход и имеющий два вывода.
Фотодиоды могут работать в двух режимах: без внешнего источника электроэнергии (режим фотогенератора) и с внешним источником (режим фотопреобразователя). На рисунке 1.7.2, а, б показаны эти схемы включения.
Рисунок 1.7.2 Схемы включения фотодиода в режиме фотогенератора (а), фотопреобразователя (б), световая характеристика (в), вольтамперная характеристика (г)
При освещении фотодиода в режиме фотогенератора на его выводах появляется фото-ЭДС с полярностью слева «+», справа «–». При подключении сопротивления нагрузки под действием ЭДС по нему идет фототок. Именно в таком режиме работают солнечные батареи.
В режиме фотопреобразователя через p-n переход протекает обратный ток, зависящий от светового потока, определяющего число неосновных носителей. Световая характеристика в режиме фотопреобразователя (рисунке 1.7.2, в) линейна и выражается уравнением
Где К – чувствительность (до 20 мА/лм),
IФТ – темновой ток (начальный ток в темноте).
ВАХ фотодиода в темноте не отличаются от ВАХ p-n перехода (рисунке 1.7.2 г), а при освещении опускается вниз. Режиму фотопреобразователя соответствуют участки в третьем квадранте, а режиму фотогенератора – в четвертом.
Фотодиоды имеют большее быстродействие, чем фоторезисторы (работоспособны при частоте 1 гГц и выше), но менее чувствительны.
С целью повышения чувствительности вместо фотодиодов применяют фототранзисторы.
9. Нелинейные сопротивления на р-n переходах. Туннельный диод.
Туннельный диод Туннельный диод ¾ это высокочастотный полупроводниковый прибор, имеющий на вольт-амперной характеристике прямого включения участок отрицательного динамического сопротивления (рис.3.6.). Туннельные диоды построены на основе узких p-n-переходов. Вольт-амперная характеристика такого диода отличается наличием токового всплеска в зоне начального участка прямой ветви. На вольт-амперной характеристике образуется участок, характеризуемый отрицательным динамическим сопротивлением, на котором приращение напряжения и тока противоположно по знаку. Это свойство позволяет использовать туннельные диоды в качестве активных элементов генераторных и переключательных схем.
Основные параметры туннельных диодов:
· пиковый ток Iп – прямой ток в точке максимума ВАХ;
· ток впадины Iв − прямой ток в точке минимума ВАХ;
· отношение токов туннельного диода Iп/Iв;
· напряжение пика Uп – прямое напряжение, соответствующее пиковому току;
· напряжение впадины Uв − прямое напряжение, соответствующее току впадины;
· напряжение раствора Uрр.
10. Обращенный диод, варикап.
Варикапы
Варикапы (рис.3.7.) ¾ это полупроводниковые диоды, у которых используется свойство изменения толщины и, соответственно, емкости р-n- перехода при изменении величины приложенного обратного напряжения. Применяются в качестве элементов автоматической настройки частоты в различных радиотехнических устройствах и системах управления.
Основными эксплуатационными параметрами являются:
Св ¾ общая емкость, измеренная между выводами варикапа при заданном обратном напряжении;
Uупр. ¾ управляющее напряжение;
3. ¾ коэффициент перекрытия по емкости;
Q ¾добротность варикапа, которая характеризуется отношением реактивного сопротивления варикапа к его активному сопротивлению.
ТКЕ ¾ температурный коэффициент емкости; он характеризует стабильность варикапа и представляет собой отношение относительного изменения емкости к вызвавшему его абсолютному изменению температуры окружающей среды:
Обращенный диод – диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.
Принцип действия обращенного диода основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина р-n- перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через р-n- переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р- области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь.
Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них соответствует обратному включению, а запирающее (непроводящее) – прямому включению.
Рисунок 3.8 – Вольт-амперная характеристика обращенного диода
Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.