Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭЦ часть 2 Экзамен ответы.docx
Скачиваний:
31
Добавлен:
27.04.2021
Размер:
4.23 Mб
Скачать

22. Магнитный усилитель мощности

Магнитный усилитель позволяет управлять переменным током, проходящим через него, путем пропускания небольшого управляющего постоянного тока через управляющую обмотку.

Принцип действия магнитного усилителя

Принцип действия магнитного усилителя основан на интересном свойстве ферромагнитных материалов. Этим материалам свойственно насыщение. Это означает, что в ненамагниченном состоянии магнитная проницаемость может быть несколько тысяч или несколько десятков тысяч. При такой высокой магнитной проницаемости индуктивность катушки, намотанной на сердечнике, будет большой. Большим будет и модуль сопротивления переменному току. Путь переменному току будет практически перекрыт. Магнитный усилитель закрыт.

Но все меняется, если достаточно сильно намагнитить сердечник. При этом его магнитная проницаемость приблизится к единице. Индуктивность, а значит модуль сопротивления, уменьшится в тысячи или десятки тысяч раз. Магнитный усилитель откроется.

Рисунок иллюстрирует описанный процесс. Магнитная индукция, характеризующая интенсивность магнитного поля, отложена по вертикальной оси. Сначала она быстро нарастает при небольшом росте электрического тока. Потом происходит перелом графика. Индукция уже растет намного медленнее по отношению к силе тока. Когда магнитный усилитель закрыт, сила тока располагается между точками 1 - 2. Сила тока через открытый магнитный усилитель находится между точками 3 - 4.

Устройство, схема

Типичный магнитный усилитель состоит из двух совершенно одинаковых дросселей с двумя обмотками, соединенных, как показано на схеме.

Силовые обмотки L2 и L3 соединены параллельно. Выводы 1 - 2 предназначены для подвода переменного тока, которым мы хотим управлять. Они включаются последовательно с нагрузкой. Управляющие обмотки соединены последовательно навстречу друг другу, чтобы напряжение на одной равнялось минус напряжению на другой.

Очень важно, чтобы дроссели были максимально идентичными. Напряжение на обмотке L1, наводимое с обмотки L2, должно быть в точности равно напряжению на обмотке L4, наводимому с обмотки L3. Тогда на выводах 3 - 4 вообще не будет напряжения, что необходимо для правильной работы устройства.

23. Характеристики ферромагнитных материалов.

Ферромагнетики – вещества, которые значительно усиливают внешнее магнитное поле. Магнитная проницаемость ферромагнитных материалов может достигать значений в несколько сотен тысяч, то есть ферромагнитные материалы способны усиливать внешнее магнитное поле в сотни тысяч раз.

Ферромагнитными свойствами обладают железо, никель, кобальт и некоторые сплавы.

Природа внутриатомных магнитных полей, способных ориентироваться и упорядочиваться под действием внешнего магнитного поля, у ферромагнетиков связана не с движением электронов вокруг атомных ядер, а с внутренними магнитными полями самих электронов.

Исследование свойств элементарных частиц показало, что все частицы, обладающие электрическими зарядами, имеют и собственные магнитные поля. Заряженные частицы подобны круговым электрическим токам. Все элементарные частицы одного вида обладают совершенно одинаковыми магнитными полями. Собственное магнитное поле электрона значительно сильнее магнитного поля, создаваемого электроном при его движении вокруг ядра. По этой причине ферромагнетики, в которых внешне поле усиливается благодаря сложению собственных магнитных полей электронов, обладают значительно большей магнитной проницаемостью, чем парамагнетики. Магнитная проницаемость ферромагнетика m = В/Н непостоянна и зависит от напряженности магнитного поля

Большинство веществ не обладает ферромагнитными свойствами, потому что при заполнении электронных оболочек атомов электроны располагаются таким образом, что их магнитные поля направлены противоположно и компенсируют друг друга. При таком расположении электронов их потенциальная энергия взаимодействия минимальна.

Упорядоченное расположение магнитных полей электронов в доменах ферромагнетиков при достаточно высокой температуре разрушается беспорядочными тепловыми колебаниями атомов в узлах кристаллической решётки. Температура , выше которой ферромагнитное вещество теряет свои ферромагнитные свойства, называется температурой Кюри. Железо, например, перестаёт быть ферромагнетиком при температуре 770˚С, никель – при температуре 356˚.