Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭЦ часть 2 Экзамен ответы.docx
Скачиваний:
31
Добавлен:
27.04.2021
Размер:
4.23 Mб
Скачать

24. Магнитомягкие и магнитотвердые материалы.

Магнитомягкие материалы – технически чистое железо, электротехнические конструкционные стали, пермаллои, некоторые типы ферритов имеют небольшую коэрцитивную силу, до 100 А/м (ампер/метр), т.е. узкую петлю гистерезиса.

Магнитотвердые материалы – мартенситные стали, сплавы железа, никеля, алюминия, кобальта и некоторые типы ферритов – имеют значительно большую коэрцитивную силу, до   А/м и выше, а следовательно, широкую петлю гистерезиса. Поэтому потери энергии на перемагничивание для магнитомягких материалов ниже, чем магнитотвердых. Это происходить потому, что потери прямо пропорциональны площади петли гистерезиса.

Магнитомягкие материалы используют в устройствах с изменяющимися магнитными полями; магнитотвердые применяют, в частности, для изготовления постоянных магнитов.

25. Потери, обусловленные гистерезисом и вихревыми токами.

26. Динамические петли гистерезиса.

Электрическим гистерезисом называют явление отставания изменения электрического смещения D от изменения напряженности поля Е. Как и в ферромагнитных веществах, площадь гистерезисной петли в координатах D, Е при медленном изменении поля характеризует потери на электрический гистерезис в единице объема сегнетодиэлектрика за один период изменения Е.

1) Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).

Рис. 1. Петля гистерезиса

Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.

2) Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим, у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.

По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.

Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.

Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.

Рис. 2. Динамическая петля

Различают упругий гистерезис двух видов:

  1. Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.

  2. Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.

Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.

Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.