Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пустынский Л.Н. Конспект лекций по Ядерной физике.doc
Скачиваний:
69
Добавлен:
28.03.2021
Размер:
3.16 Mб
Скачать

§4.6. Реакции под действием заряженных частиц

1. Общие свойства

Реакции с заряженными частицами (протонами, -частицами, дейтонами и другими ядрами) имеют характерные особенности, ненаблюдаемые в реакциях под действием γ-квантов и нейтронов.

1. Наличие электрического заряда у частицы и ядра-мишени вызывает между ними кулоновское отталкивание. Чтобы заряженная частица а и ядро-мишень А могли вступить в ядерное взаимодействие, частица а в СЦИ должна иметь кинетическую энергию Та, больше высоты кулоновского барьера Вk (см. (1.9.2)). В случае Вkа заряженная частица а может достичь области действия ядерных сил путем туннельного перехода сквозь кулоновский барьер (см. §3.4), но такой способ имеет малую вероятность, которая быстро уменьшается при уменьшении Та.

2. Даже если кинетическая энергия заряженной частицы при входе в мишень превышает высоту кулоновского барьера, это еще не означает, что она обязательно испытает ядерное взаимодействие и вступит в реакцию. При движении в мишени заряженная частица испытывает многократные взаимодействия с атомными электронами, в результате которых кинетическая энергия частицы расходуется на ионизацию и возбуждение атомов мишени. Энергия, теряемая заряженной частицей при движении в среде, составляет около 35 эВ в одном акте ионизации. В итоге кинетическая энергия Т(х) частицы становится тем меньше, чем больший путь она прошла в веществе мишени. Сечение ионизации атома ион ~ 10-16 см2, тогда как типичное сечение ядерной реакции реак ~ 10-24 см2. Если даже начальная кинетическая энергия заряженной частицы а на 1 МэВ превышает высоту кулоновского барьера, то она испытает n ≈ 3104 ионизационных взаимодействий, прежде чем ее кинетическая энергия сравняется с высотой кулоновского барьера. Эффективное сечение процесса потери такого количества энергии составит (ион)пот = ион/n ≈ 310‑21 см2, т.е. вероятность ядерной реакции оказывается в тысячи раз меньше вероятности потерять энергию на ионизацию. Поэтому у подавляющей части заряженных частиц а кинетическая энергия становится меньше высоты кулоновского барьера, и они не могут эффективно взаимодействовать с ядром-мишенью А.

Р ассчитаем выход ядерной реакции (см. §4.3) под действием заряженных частиц. Пусть на мишень падают заряженные частицы с плотностью потока Ф0 (рис. 4.6.1) и энергией Т0. Мишень считается толстой, если средний пробег R частиц меньше толщины мишени. Число реакций на единице площади мишени в слое dx на глубине x в единицу времени равно (см. (4.3.11))

.

(4.6.1)

Здесь нельзя пренебречь зависимостью  от х, так как энергия заряженных частиц уменьшается с ростом пути х, пройденного частицей в мишени. Однако плотность потока частиц в мишени практически не меняется, так как доля ядерных взаимодействий ничтожно мала, а в результате ионизационных процессов сами частицы не исчезают, а только уменьшается их энергия. Поэтому, вместо (4.6.1) можно записать:

.

(4.6.2)

Полное число реакций в мишени на единице площади в единицу времени получим, выполнив интегрирование (4.6.2) в пределах от 0 до R:

.

(4.6.3)

Учитывая, что T = T(x), произведем в (4.6.3) замену переменной х на переменную Т:

.

(4.6.4)

При записи (4.6.4) учтено, что функция удельных потерь энергии dT/dx < 0.

Тогда по определению выход ядерной реакции под действием заряженных частиц будет равен

.

(4.6.5)

Зависимость Y(T0) - называется функцией возбуждения реакции.

Если экспериментально определить зависимость Y(T), то из (4.6.5) следует, что

.

(4.6.6)

Если известна функция удельных потерь dT/dx от кинетической энергии заряженных частиц в веществе мишени, с помощью (4.6.6) можно определить зависимость сечения реакции от кинетической энергии бомбардирующих частиц:

.

(4.6.7)