
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
- •2 Семестр,
Д
КАНТ - 99
(функции многих переменных),
2 Семестр,
вариант – 1
1.
Найти область определения функции
.
Является ли эта область определения
ограниченной? замкнутой?
2.
Для функции
изобразить линии уровняz
= –1; 1; 2. Могут
ли линии разного уровня пересекаться?
3. Изобразить объём, ограниченный поверхностями
z = 0, x2 + y2 =1, z =1– y2 .
4. Сформулировать теоремы Вейерштрасса. Построив семейство линий уровня функции z = x2 + y2, определить её наибольшее и наименьшее значения в области треугольника А(–1, 7), В(7, 1), С(5, 12).
5.
Для функции
проверить справедливость теоремы
Шварца. Проверить также, что данная
функция удовлетворяет уравнению Лапласа
.
6.
Дать определение дифференциала функции
двух переменных на данном отрезке.
Заменив приращение функции её
дифференциалом, вычислить приближенное
значение функции
в
точке (27,027; 8,994).
7. Исследовать на экстремум функцию z = 3x2y – 2xy2 + 18xy . Изобразить на плоскости линию уровня z = 0 , области знакопостоянства функции и её критические точки.
8.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1). Для проходящего
через указанную точку решения у
= у(х)
этого уравнения найти первые три
слагаемых формулы Тейлора – Пеано.
9.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1, 1). При помощи
линеаризации найти приближенное
выражение для проходящего через указанную
точку решения z
= z(x,y) этого
уравнения.
10.
В дифференциальном уравнении
произвести замену независимых переменных
.
11. Исследовать на условный экстремум функцию z = 2x +3y при условии
2 x2 + y2 –2x – 3y =0.
Построив кривую-условие и семейство линий уровня функции, обосновать графически полученные результаты.
12. Цены товаров Х и Y равны соответственно 7 и 5 за единицу товара. Сколько единиц товаров Х и Y следует купить на сумму Q = 105, чтобы функция полезности U = x2y была максимальной.
Д
КАНТ - 99
(функции многих переменных),
2 Семестр,
вариант – 2
1.
Найти область определения функции
.
Является ли эта область определения
ограниченной? замкнутой?
2.
Для функции
изобразить линии уровняz
= 0; 1; –2. Могут
ли линии разного уровня пересекаться?
3. Изобразить объём, ограниченный поверхностями
xy z = 0, x + y =2, z = x2 + y2 .
4. Сформулировать теоремы Вейерштрасса. Построив семейство линий уровня функции z = 2x – y, определить её наибольшее и наименьшее значения в области, ограниченной линиями у = х2 , у = х+2 .
5.
Для функции
проверить справедливость теоремы
Шварца. Проверить также, что данная
функция удовлетворяет уравнению Лапласа
.
6.
Дать определение дифференциала функции
двух переменных на данном отрезке.
Заменив приращение функции её
дифференциалом, вычислить приближенное
значение функции
в
точке (3,01; 1,99).
7. Исследовать на экстремум функцию z = x2y + 2xy2 – 6xy . Изобразить на плоскости линию уровня z = 0 , области знакопостоянства функции и её критические точки.
8.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1). Для проходящего
через указанную точку решенияу
= у(х)
этого уравнения найти первые три
слагаемых формулы Тейлора – Пеано.
9.
Проверить, что функциональное уравнение
удовлетворяет условиям теоремы Юнга в
окрестности точки (1, 1, 1). При помощи
линеаризации найти приближенное
выражение для проходящего через указанную
точку решения z
= z(x,y) этого
уравнения.
10.
В дифференциальном уравнении
произвести замену независимых переменных
.
11. Исследовать на условный экстремум функцию z = x2 + y2 при условии
x2 + y2 – 4x – 2y –15 =0.
Построив кривую-условие и семейство линий уровня функции, обосновать графически полученные результаты.
12. Цены товаров Х и Y равны соответственно 18 и 12 за единицу товара. Какую минимальную сумму следует затратить на приобретение этих товаров для того, чтобы функции полезности U = x3y2 приняла значение U = 32 .
Д
КАНТ - 99
(функции многих переменных),