Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sbor_z_u_m (1)

.pdf
Скачиваний:
79
Добавлен:
08.02.2015
Размер:
6.56 Mб
Скачать

И, аналогично для любой нечетной функции и симметричного относительно нуля отрезка. Применять ли данный метод на практике? На самом деле вопрос не такой простой. Когда вам предложен сложный пример с большим количеством вычислений, то можно, и даже уместно указать, что такой интеграл равен нулю, сославшись на нечетность функции и симметричность отрезка интегрирования относительно нуля.

Как говорится, знание – сила, а незнание – рабочая сила.

Но когда вам предложен короткий пример, то преподаватель вполне обоснованно может заставить прорешать его подробно: взять интеграл и подставить пределы интегрирования по формуле Ньютона-Лейбница. Всё зависит от постановки задачи. Например, Вам предложено вычислить тот же неопределенный интеграл

.

Если вы сразу запишите, что

и поясните словами, почему получается ноль, то это будет не очень хорошо, поскольку перед Вами стояла задача вычислить. Намного лучше «прикинуться дурачком» и провести полное решение:

.

То, что интеграл равен нулю, вы будете знать заранее. И это знание 100 %-но позволит избежать ошибки.

С другой стороны, когда в тестовом задании спрашивают: «Чему равен интеграл?», то отвечать нужно быстро, на основе всего, что знаешь по этому вопросу.

8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом

Данный раздел предназначен для тех, кто хорошо разобрался с уроком Несобственные интегралы. Примеры решения, или, по крайне мере, понял бОльшую его часть.

Речь пойдет о несобственных интегралах первого рода с бесконечным нижним пределом:

.

351

Пример 7 Вычислить несобственный интеграл или установить его расходимость

.

Чем отличается данный интеграл от «обычного» несобственного интеграла с бесконечным верхним пределом? По технике решения практически ничем. Так же нужно найти первообразную (неопределенный интеграл), так же нужно использовать предел при вычислении интеграла. Отличие состоит в том, что необходимо устремить нижний предел интегрирования к «минус бесконечности»:

.

Из вышесказанного следует очевидная формула для вычисления такого несобственного интеграла:

.

В данном примере, подынтегральная функция непрерывна на и:

,

то есть, несобственный интеграл расходится.

Вот тут, главное, быть аккуратным в знаках и не забывать, что . Нужно внимательно разобраться, что куда стремится.

Пример 8 Вычислить несобственный интеграл или установить его расходимость

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования

Очень интересный случай. Несобственный интеграл первого рода с двумя бесконечными пределами интегрирования имеет следующий вид:

.

Как его решать? Его нужно представить в виде суммы двух несобственных интегралов:

.

Примечание: вместо ноля может быть любое число, но ноль обычно удобнее всего.

Если оба интеграла правой части сходятся, то сходится и сам интеграл

Если хотя бы один из интегралов правой части расходится, то расходится и интеграл

.

352

Пример 9 Вычислить несобственный интеграл или установить его расходимость.

Мы специально подобрали простой пример, чтобы проиллюстрировать другой важный момент применения метода.

Подынтегральная функция непрерывна на всей числовой прямой. Согласно правилу, интеграл следует представить в виде суммы интегралов:

Интеграл будет сходиться, если будут сходиться оба интеграла правой части. Проверяем:

сходится.

сходится.

Оба интеграла сходятся, значит, сходится и весь интеграл:

Теперь обратим внимание на подынтегральную функцию. Она является чётной.

В несобственных интегралах с (двумя) бесконечными пределами, а, значит, симметричными интервалами интегрирования, чётностью пользоваться МОЖНО.

Аналогично определенному интегралу, интервал интегрирования можно разделить, а результат

– удвоить. То есть, решение допустимо записать короче:

Почему такое возможно?

График подынтегральной чётной функции симметричен относительно оси OY. Следовательно, если половина площади конечна (интеграл сходится) – то симметричная половина площади тоже конечна.

Если же половина площади бесконечна (интеграл расходится), следовательно, симметричная половина тоже будет расходиться.

Пример 10 Вычислить несобственный интеграл или установить его расходимость.

.

Подынтегральная функция непрерывна на всей числовой прямой. Согласно правилу, интеграл нужно представить в виде суммы двух интегралов:

Проверяем сходимость интегралов правой части:

.

353

Первый интеграл расходится. Знак «минус» говорит о том, что бесконечная криволинейная трапеция расположена ниже оси абсцисс.

Не нужно проверять сходимость второго интеграла правой части, поскольку для того, чтобы интеграл

сходился, необходимо чтобы сходились оба интеграла правой части. Ответ: несобственный интеграл

расходится.

А сейчас очень важный момент: подынтегральная функция

является нечётной.

Внесобственных интегралах с бесконечными пределами (т. е. симметричными интервалами интегрирования) нечётностью пользоваться НЕ СЛЕДУЕТ!!!

Вэтом состоит отличие от определенного интеграла. Там всегда можно смело записать:

,

а здесь так поступать – не следует. Почему? Потому что в ряде случаев, как, например, в рассмотренном примере, получится нонсенс (бессмыслица). Если считать, что

,

то интеграл будет сходящимся (поскольку получено конечное число), но в то же время его часть:

– расходится (как мы только что показали в решении). Тонкость же состоит в том, что несобственный интеграл равен своему значению только в предельном смысле. Интеграл

от нечетной функции f(x), в принципе, может стремиться (а не равняться) к нулю, но нельзя сразу записывать, что

.

Всегда представляем интеграл в виде двух интегралов и выполняем проверку на сходимость по стандартному алгоритму.

Пример 11 Вычислить несобственный интеграл или установить его расходимость

.

Полное решение и ответ в конце урока.

354

8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка

Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие несобственные интегралы второго рода.

Многие выкладки предыдущего раздела будет справедливы и сейчас.

Сразу конкретная задача:

Пример 12 Вычислить несобственный интеграл или установить его расходимость

.

Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию

на чертёже:

Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.

Методика решения практически такая же, как и в предыдущем параграфе. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Если оба интеграла правой части сходятся, то сходится и весь интеграл.

Если хотя бы один из интегралов правой части расходится, то расходится и весь интеграл. А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.

Но, вместо этого замечаем, что подынтегральная функция является чётной. Чётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:

Подынтегральная функция терпит бесконечные разрывы в точках . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.

355

Ответ:

; данный интеграл сходится.

Пример 13 Вычислить несобственный интеграл или установить его расходимость

.

Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе – нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму.

Полное решение и ответ в конце урока.

Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля.

Например, рассмотрим несобственный интеграл

.

Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:

Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. Если оба интеграла будут сходиться, то будет сходиться и весь интеграл. Если хотя бы один интеграл правой части расходится, то расходится и весь интеграл.

Кстати, не важно, в каком порядке исследовать сходимость интегралов правой части. Можно сначала исследовать сходимость интеграла

,

а потом (если до этого дойдет), исследовать сходимость первого интеграла правой части.

8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования

Такие примеры встречаются на практике относительно редко, поэтому ограничимся только обзором. Пример опять же будет, в известной степени, условным. Рассмотрим несобственный интеграл

.

На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке x = 1. Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интервал интегрирования не симметричен относительно нуля.

356

Метод решения – тот же старый. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

.

Интегралы правой части вам уже знакомы.

Решения и ответы:

Пример 2: Решение:

Пример 5: Решение:

Проведем замену:

Новые пределы интегрирования:

357

Пример 8: Решение:

Подынтегральная функция непрерывна на интервале .

Пример 11: Решение:

Подынтегральная функция непрерывна на всей числовой прямой. Представим интеграл в виде суммы двух интегралов:

Проверим сходимость интегралов правой части:

Сходится.

Сходится. Оба интеграла сходятся, значит, сходится и весь интеграл:

Ответ:

Примечание: Будет серьезной оплошностью сразу записать, что

,

пользуясь нечетностью подынтегральной функции и симметричностью интервала интегрирования. Стандартный алгоритм обязателен!!!

Пример 13: Решение:

Подынтегральная функция терпит бесконечные разрывы в точках

.

358

Представим данный интеграл в виде суммы двух интегралов:

Исследуем сходимость интегралов правой части:

Несобственный интеграл расходится, значит, расходится и весь интеграл. Интеграл

- можно уже не проверять. Ответ: интеграл

– расходится

Приложение 1. Числа

Наиболее общие закономерности и законы экономических явлений выясняются путем качественного анализа, но конкретное выражение их возможно лишь с помощью меры и числа.

Число - важнейшее математическое понятие, меняющееся на протяжении веков. Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4…

При счете отдельных предметов единица есть наименьшее число, и делить ее на доли не нужно, а иногда и нельзя, однако уже при грубых измерениях величин приходится делить 1 на доли.

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Дроби обозначаются, как

m

; где m и n - целые числа.

n

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

3

- это сокращение дроби; а

2

 

2 2

 

4

- это расширение дроби.

8

4

3

3 2

6

 

 

 

 

 

 

 

Дроби со знаменателем 10 - это десятичные дроби, которые обозначаются с помощью запятой, разделяющей целую и дробную части: 101 0,1 .

Среди десятичных дробей особое место занимают периодические дроби.

Различают 2 случая:

1) чистая периодическая дробь, как 0,2525…=0,(25)= 9925 ;

2) смешанная периодическая дробь, как 1,2555…=1,2(5)=1 25 2 1 23 . 90 90

359

Дальнейшее расширение понятия числа вызвано уже развитием самой математики. Рене Декарт в 17 веке ввёл понятие отрицательного числа. Объединение множеств целых (положительных и отрицательных) чисел, дробных (положительных и отрицательных) чисел и нуля получили название рациональных чисел (rational numbers).

Определение: Всякое рациональное число может быть записано в виде отношения двух целых чисел, одно из которых (в знаменателе) не равно нулю.

Определение: Всякое рациональное число может быть записано в виде конечной дроби (с конечным числом знаков после запятой) или периодической дроби.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - ввели действительные (вещественные) числа (real numbers).

Объединение множеств рациональных (положительных и отрицательных) и иррациональных (положительных и отрицательных) чисел получило название множества

действительных чисел.

Определение: Всякое иррациональное число может быть записано в виде бесконечной десятичной непериодической дроби.

Иррациональные числа (irrational numbers) появились при измерении несоизмеримых отрезков (таких, как сторона и диагональ квадрата).

В алгебре иррациональные числа появились при извлечении корней (2) . Примером

трансцендентного, или иррационального числа являются числа π, е. Все действительные числа можно изобразить на числовой оси.

Числовая ось (числовая прямая) это:

а) прямая линия с выбранным на ней направлением; б) на оси задано начало отсчета – нулевая точка (0); в) на оси задана единица масштаба.

 

0

 

 

 

х

-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1

 

 

1

2

3

 

Комплексные числа. После действительных чисел (real numbers) не появилось

«недействительных чисел», но возникли так называемые «комплексные числа» (complex numbers). «Комплексное число» - это не число в обычном понимании, характеризующееся одним параметром, а математический объект, составленный из двух элементов, каждый из которых - действительное число.

Геометрически комплексное число может быть представлено, как точка на плоскости (элемент плоскости), на которой задана прямоугольная система координат: две взаимно перпендикулярные числовые оси (0X и 0Y) с общей нулевой точкой (0) начала отсчёта. Произвольная точка такой координатной плоскости определяется упорядоченной парой чисел (x; y), где x и y называют обычно координатами точки по соответствующим осям. Пара называется упорядоченной, т. к. при перестановке чисел x; y местами в скобках получается другое комплексное число (другая пара): (x; y) (y; x).

Определение: Всякое комплексное число представимо в виде упорядоченной пары действительных чисел: z = (x; y), где и x, и y – действительные числа, а z – «название» этой пары. Причём первое в паре число (x) называют действительной частью комплексного числа, а второе в паре число (y) – мнимой частью комплексного числа.

Действительные числа после этого определения стали обозначать, как x (x; 0), и отмечать их на числовой оси 0X, а мнимые числа (мнимые части комплексных чисел) – как y (0; y). Для комплексных чисел ввели особые алгебраические операции. Оказалось, что комплексные числа представимы в виде векторов и просто «алгебраически», как: z = x + i∙y, если величину i (0; 1) назвать мнимой единицей (смотрите раздел Комплексные числа).

360

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]