
Sbor_z_u_m (1)
.pdf
И, аналогично для любой нечетной функции и симметричного относительно нуля отрезка. Применять ли данный метод на практике? На самом деле вопрос не такой простой. Когда вам предложен сложный пример с большим количеством вычислений, то можно, и даже уместно указать, что такой интеграл равен нулю, сославшись на нечетность функции и симметричность отрезка интегрирования относительно нуля.
Как говорится, знание – сила, а незнание – рабочая сила.
Но когда вам предложен короткий пример, то преподаватель вполне обоснованно может заставить прорешать его подробно: взять интеграл и подставить пределы интегрирования по формуле Ньютона-Лейбница. Всё зависит от постановки задачи. Например, Вам предложено вычислить тот же неопределенный интеграл
.
Если вы сразу запишите, что
и поясните словами, почему получается ноль, то это будет не очень хорошо, поскольку перед Вами стояла задача вычислить. Намного лучше «прикинуться дурачком» и провести полное решение:
.
То, что интеграл равен нулю, вы будете знать заранее. И это знание 100 %-но позволит избежать ошибки.
С другой стороны, когда в тестовом задании спрашивают: «Чему равен интеграл?», то отвечать нужно быстро, на основе всего, что знаешь по этому вопросу.
8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом
Данный раздел предназначен для тех, кто хорошо разобрался с уроком Несобственные интегралы. Примеры решения, или, по крайне мере, понял бОльшую его часть.
Речь пойдет о несобственных интегралах первого рода с бесконечным нижним пределом:
.
351




8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка
Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие несобственные интегралы второго рода.
Многие выкладки предыдущего раздела будет справедливы и сейчас.
Сразу конкретная задача:
Пример 12 Вычислить несобственный интеграл или установить его расходимость
.
Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию
на чертёже:
Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.
Методика решения практически такая же, как и в предыдущем параграфе. Представим несобственный интеграл в виде суммы двух несобственных интегралов:
Если оба интеграла правой части сходятся, то сходится и весь интеграл.
Если хотя бы один из интегралов правой части расходится, то расходится и весь интеграл. А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.
Но, вместо этого замечаем, что подынтегральная функция является чётной. Чётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:
Подынтегральная функция терпит бесконечные разрывы в точках . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.
355

Ответ:
; данный интеграл сходится.
Пример 13 Вычислить несобственный интеграл или установить его расходимость
.
Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе – нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму.
Полное решение и ответ в конце урока.
Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля.
Например, рассмотрим несобственный интеграл
.
Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:
Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. Если оба интеграла будут сходиться, то будет сходиться и весь интеграл. Если хотя бы один интеграл правой части расходится, то расходится и весь интеграл.
Кстати, не важно, в каком порядке исследовать сходимость интегралов правой части. Можно сначала исследовать сходимость интеграла
,
а потом (если до этого дойдет), исследовать сходимость первого интеграла правой части.
8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования
Такие примеры встречаются на практике относительно редко, поэтому ограничимся только обзором. Пример опять же будет, в известной степени, условным. Рассмотрим несобственный интеграл
.
На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке x = 1. Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интервал интегрирования не симметричен относительно нуля.
356



