Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sbor_z_u_m (1)

.pdf
Скачиваний:
79
Добавлен:
08.02.2015
Размер:
6.56 Mб
Скачать

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

.

Далее следует «безболезненная» линейная замена и получается знакомый интеграл

.

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Если такой интеграл встретится, смотрите учебник – там всё просто.

Интегрирование сложных тригонометрических функций

На уроке Интегралы от тригонометрических функций мы разобрали интеграл от тангенса в квадрате. В том примере для нахождения интеграла мы применяли тригонометрическую формулу

.

Интеграл от тангенса в четвертой, пятой степени (редко в более высоких степенях) решается с помощью этой же формулы!

Пример 15 Найти неопределенный интеграл

.

Идея решения подобных интегралов состоит в том, чтобы с помощью формулы «развалить» исходный интеграл на несколько более простых интегралов:

(1) Готовим подынтегральную функцию к применению формулы.

(2)Для одного из множителей используем формулу

(3)Раскрываем скобки и сразу же используем свойство линейности неопределенного интеграла.

(4)В первом интеграле используем метод подведения функции под знак дифференциала, во втором интеграле еще раз используем формулу

, в данном случае .

(5) Берём все три интеграла и получаем ответ.

Пример 16

291

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Для котангенса существует аналогичная формула:

. Полное решение и ответ в конце урока.

Если возникли затруднения или недопонимание, следует вернуться к уроку Интегралы от тригонометрических функций. На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать! Рассмотрим еще один канонический пример - интеграл от единицы, деленной на синус:

Пример 17 Найти неопределенный интеграл

.

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Приведём это решение с комментариями к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла

.

(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на

.

(3)По известной формуле в знаменателе превращаем дробь в тангенс.

(4)Подводим функцию под знак дифференциала.

(5)Берём интеграл.

Пример 18 Найти неопределенный интеграл

.

Указание: Самым первым действием следует использовать формулу приведения

292

и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19 Найти неопределенный интеграл

.

Ну, это совсем простой пример. Полные решения и ответы в конце урока.

Думаем, теперь ни у кого не возникнет проблем с интегралами:

и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью тождественных преобразований и тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса

.

То есть, речь идет о замене:

.

В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала.

Примечание: аналогичные рассуждения можно провести и для котангенса.

Существует и формальное правило для применения вышеуказанной замены:

Если сумма степеней косинуса и синуса – целое отрицательное число, то интеграл можно свести к тангенсам и его производной.

Для интеграла – целое отрицательное число.

Для интеграла – целое отрицательное число.

Для интеграла – целое отрицательное число. Рассмотрим пару более содержательных примеров на это правило:

Пример 20 Найти неопределенный интеграл

.

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное число, значит, интеграл можно свести к тангенсам и его производной:

293

(1)Преобразуем знаменатель.

(2)По известной формуле получаем .

(3)Преобразуем знаменатель.

(4)Используем формулу

.

(5)Подводим функцию под знак дифференциала.

(6)Проводим замену . Более опытные студенты замену могут и не проводить, но всетаки лучше заменить тангенс одной буквой – меньше риск запутаться.

Далее берётся простой интеграл и проводится обратная замена.

Пример 21 Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Пример 22 Найти неопределенный интеграл

.

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

.

Пара творческих примеров для самостоятельного решения:

Пример 23 Найти неопределенный интеграл

.

Пример 24 Найти неопределенный интеграл

294

.

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока.

Переходим к заключительному пункту путешествия в мир сложных интегралов:

Интеграл от корня из дроби

Интеграл, который мы рассмотрим, встречается достаточно редко, но я буду очень рад, если единственный пример данного параграфа вам поможет.

Корнями всё начиналось, корнями и закончится. Рассмотрим неопределенный интеграл:

, где a, b, c, d – числа. Считаем, что все эти числа и коэффициенты не равны нулю.

В подынтегральной функции у нас находится корень, а под корнем – дробь, в числителе и знаменателе которой располагаются линейные функции.

Метод стар – необходимо избавиться от корня. Стар и уныл, но сейчас станет веселее, поскольку придется проводить непростую замену.

Замена, с помощью которой мы гарантированно избавимся от корня, такова:

.

Теперь нужно выразить «икс» и найти, чему равен дифференциал dx. Выражаем «икс»:

Теперь найдем дифференциал:

Зачем были эти нелепые скучные телодвижения?

295

Мы вывели готовые формулы, которыми можно пользовать при решении интеграла вида

!

Формулы замены таковы:

.

Заключительный пример:

Пример 25 Найти неопределенный интеграл

.

Проведем замену:

.

В данном примере: a =-1, b = 2, c = 3, d = 1. Тогда для dx имеем:

.

Таким образом:

.

Такой интеграл, кстати, уже фигурировал в Примере 13. Интегрируем по частям:

Проведем обратную замену. Если изначально

,

то обратно:

.

Преобразуем далее:

296

.

Некоторым страшно, а я это продифференцировал, ответ верный! Иногда встречаются интегралы вида

, ,

но это нужно быть либо слишком умным, либо попасть под раздачу.

Идея та же – избавиться от корня, причем во втором случае, как все догадались, следует проводить подстановку

.

и самостоятельно выводить, чему будет равняться дифференциал dx. Теперь вам практически любой интеграл по силам, успехов!

Решения и ответы:

Пример 2: Решение:

.

Проведем замену:

Интегрируем по частям:

297

Пример 3: Ответ:

.

Пример 4: Ответ:

.

Пример 6: Решение:

.

Интегрируем по частям:

Таким образом:

В результате:

Пример 8: Решение:

Дважды интегрируем по частям и сводим интеграл к самому себе:

Таким образом:

298

Пример 10: Решение:

.

Проведем замену:

Пример 11: Решение:

Замена:

.

299

Пример 12: Решение:

Замена:

.

Пример 14: Решение:

Дважды используем рекуррентную формулу

Пример 16: Решение:

Пример 18: Решение:

.

300

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]