Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы по физике.doc
Скачиваний:
31
Добавлен:
07.02.2015
Размер:
7.26 Mб
Скачать

Вопрос 5

Гармонические колебания

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

где wt - величина под знаком косинуса или синуса; w- коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью wv = wА). Через некоторое время t радиус повернется на угол ф: ф=wt.

При таком движении по окружности точки М ее проекция на ось х Мх будет совершать движение вдоль оси х, координата которой х будет равна х = А • cos ф = = А • cos wt. Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания. Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки Мх, совершающей механические гармонические колебания? Координаты колеблющейся точки Мх одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) - wt = 2ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный . Поэтому величину w назвали циклической (или круговой) частотой.

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид: 

Величину ф0называют начальной фазой.

Скорость точки Мх найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п. Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы Fx, которая обеспечивает гармоническое механическое движение:

Величина Fx пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний.

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: Fyпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

  1. Движение тела на пружине будет происходить по гармоническому закону, т. е. тело m будет совершать механические гармонические колебания;

  2. Сравнивая коэффициенты перед х уравнений (4.6) и (4.9), заключаем, что циклическая частота этих гармонических колебаний будет равна:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a.

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила Fx = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a.

Заменим sin а в уравнении (4.12), получим следующее уравнение:

Уравнение (4.13) показывает, что ускорение колебания маятника прямо пропорционально смещению и противоположно ему направлено. Следовательно, маятник будет совершать механические гармонические колебания с циклической частотой

и поэтому, согласно уравнению (4.2), период колебаний его будет равен:

Превращение энергии при гармонических механических колебаниях рассмотрим на примере пружинного маятника. В любой момент времени полная энергия колеблющегося груза (Еполн) будет состоять из кинети-

Полная энергия при гармонических механических колебаниях пропорциональна квадрату амплитуды и квадрату циклической частоты.

На рис. 65 качественно изображены графики зависимостей потенциальной и кинетической энергии пружинного маятника от координаты х.

На рис. 66 представлены качественные графики зависимостей кинетической и потенциальной энергии от времени.

За начальный момент времени принято положение тела, максимально отклоненное от положения равновесия. Частота колебания потенциальной и кинетической энергии в два раза больше, чем частота колебания движущегося тела.

Геометрический способ представления колебаний с помощью векторной диаграммы

Существует очень наглядный геометрический способ представления гармонических колебаний, заключающийся в изображении колебаний в виде векторов на плоскости. Полученная таким образом схема называется векторной диаграммой (рис. 7.4).

Выберем ось . Из точки О, взятой на этой оси, отложим вектор длины , образующий с осью угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось  будет меняться со временем по закону . Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора; с круговой частотой, равной угловой скорости вращения, и с начальной фазой, равной углу, образованному вектором с осью X в начальный момент времени.

Векторная диаграмма дает возможность свести сложение колебаний к геометрическому суммированию векторов. Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты, которые имеют следующий вид:

.

Представим оба колебания с помощью векторов  и  (рис. 7.5). Построим по правилу сложения векторов результирующий вектор . Легко увидеть, что проекция этого вектора на ось  равна сумме проекций слагаемых векторов . Следовательно, вектор  представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , что и векторы , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой  и начальной фазой . По теореме косинусов квадрат амплитуды результирующего колебания будет равен

.

(7.3)

Из рис. 7.5 видно, что начальная фаза результирующего колебания будет равна

.

(7.4)

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Формулы (7.3) и (7.4) можно, конечно, получить, сложив выражения для  и  аналитически, но метод векторной диаграммы отличается большей простотой и наглядностью.

Уравнение гармонических колебаний

Ниже представлено уравнение гармонических колебаний. Это уравнение дает зависимость колеблющейся величины S от времени t

так как синус изменяется в пределах от +1 до -1, то амплитуда (А) может принимать значение от +А до -А.

Аргумент синуса wt+f0 называют фазой гармонических колебаний. Фаза гармонических колебаний определяет смещение в момент времени t. Начальная фаза f0 определяет смещение тела в момент начала отсчета времени (t = 0). Фаза гармонических колебаний представляет собой угловую меру времени, прошедшего от начала колебаний.

Гармонические колебания

Гармонические колебания - единственный тип колебаний, форма которых не искажается при воспроизведении. Гармонические колебания это колебания, колеблющаяся величина которых изменяется со временем по закону синуса или косинуса.