Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по БЖ.doc
Скачиваний:
53
Добавлен:
07.02.2015
Размер:
1.32 Mб
Скачать

3. Спектры шума и звуковых волн

Спектром называется зависимость уровня интенсивности звука или шума от частоты LJ (f). Отметим следующие особенности спектров звука, рассматриваемых в нашей работе (см. рис. 1).

1) Многие тысячелетия человек использует музыкальные инструменты; при этом он добивается «идеального благозвучия». Оказалось, что правильная настройка музыкальных инструментов (например, струн рояля или арфы) соответствует отношению частот звука, издаваемых соседними струнами, равному двум.

Известно, что lg 2 = 0,3010 = const; поэтому при использовании по оси частоты логарифмической шкалы расстояние между последовательными частотами постоянно.

Такой же масштаб используется и при построении спектра шума.

2) По определению шум есть набор беспорядочных звуковых колебаний. В математике такие физические явления определяют как случайные функции; при этом уровень шума на заданной частоте есть случайная величина.

Вопрос: Почему при измерениях уровня шума на заданной частоте стрелка прибора шумомера колеблется?

Ответ: Уровень шума как случайная величина определяется двумя параметрами: математическим ожиданием и дисперсией. При измерениях мы визуально видим математическое ожидание (среднее значение за 3 – 6 сек.) и дисперсию (разброс уровня шума во времени). Это – второй классический пример случайной величины (первым является серия измерений какой – либо величины).

Замечание. При построении спектров шумов дисперсию обычно не указывают.

3) При измерениях спектра уровня шума на шумомерах высокого класса фильтры «вырезают» на каждой частоте f интервал интенсивности в диапазоне частот:

0,75 ff ≤ 1,5 f.

Это октавная полоса частот .

Поскольку на этом сравнительно узком интервале уровень интенсивности шума изменяется мало, точность измерений оказывается достаточно высокой. Как отмечалось выше, проблемы с точностью измерений возникают, если мы пытаемся определить суммарную энергию (интенсивность) шума во всем диапазоне частот.

4) Для спектров производственных шумов характерно наличие экстремума (максимума) в средней части спектра. Поэтому при измерениях уровня шума с целью получить максимальную точность измерений необходимо вначале найти частоту, на которой уровень интенсивность максимален; для этой частоты устанавливается уровень, чуть меньший 120 дБ (применительно к оборудованию, используемому в лабораторной работе).

4. Область слухового восприятия

Диаграмма области слухового восприятия приведена на рис. 2.

Напомним, что диапазон слуха по частоте здорового человека лежит от 20 Гц до 20 000 Гц; с возрастом в области высоких частот наша чувствительность падает.

Частоты, меньшие 20 Гц, определяют как инфразвук; большие, чем 20 000 Гц, как ультразвук.

Особую роль в теории звуковых волн имеет частота 1000 Гц. При этой частоте:

  • наш природный механизм «логарифмирования» энергии звуковых волн наиболее совершенен – условие (1) выполняется с наибольшей точностью;

  • диапазон энергий звуковых волн, воспринимаемый нами, близок к максимальному значению;

  • близка к максимальной величине энергия как производственных, так и природных шумов (см. рис. 1);

  • «центр» частот речи () близок к «центру» производственных и природных шумов;

  • имеет место совпадение с «центром» диапазона звуков, воспринимаемых нами.

Возможно, перечисленные особенности взаимосвязаны.

Поэтому:

  • порог ощущения звука выбран при частоте 1 кГц;

  • в случае, если в публикации не указана частота, предполагается, что речь идет о частоте 1 кГц (см., например, таблицу 1);

  • в нормах уровней интенсивностей шумов, которые нельзя превышать («предельных спектрах»), указывается уровень при частоте 1 кГц (используется обозначение ПС - 80).

Отметим также, что наше ухо более чувствительно при высоких частотах; при этом «порог ощущения» по энергии оказывается в 10 – 100 раз меньше, чем при частоте 1 кГц.

Наконец, нормы на предельно – допустимые уровни шума учитывают нашу повышенную чувствительность к высоким частотам.