- •Формальная логика
- •Издательство Ленинградского университета Ленинград 1977 Печатается по постановлению Редакционно-издательского совета Ленинградского университета
- •Рецензенты: рроф. А. В. Дроздов и кафедра философии Ленинградского педагогического института имени а. И. Герцена
- •§ 1. Марксистская философия о мышлении
- •§ 2. Мышление и язык
- •§ 3. Определение формальной логики
- •1 Слово «некоторые» употребляется в логике не в смысле «только некоторые», а в смысле «некоторые, а может быть и все».
- •2 Слово «предмет» употребляется в логике в том смысле, что вообще может служить объектом нашего рассуждения, размышления,
- •1) Все цветы суть растения. Все тюльпаны суть цветы.
- •2) Все материалисты в философии суть атеисты. Все марксисты суть материалисты в философии.
- •8 В изучении логических структур очень важно приобретение навыков в решении логических задач. С этой целью рекомендуется' книга проф. А.. И. Уемова «Упражнения и задачи по логике», м., 1961,
- •§ 4. Логика и психология
- •§ 5. Из истории логики
- •6 Маркс к. Н Энгельс ф. Соч., т. 20, с. 138.
- •§ 6. Практическое значение формальной логики
- •§ 7. Структура формальной логики
- •Основные логические формы и методы мышления
- •Глава I понятие § 8. Об определении и структуре понятия
- •1 Есть мысленное отражение в форме непосредственного единства общих существенных признаков предметов.
- •7 Слово «понятие» многозначно, мы его будем употреблять лишь в указанном смысле.
- •§ 9. Основные методы образования понятий
- •§ 10. Соотношение между содержанием и объемом понятия
- •§ 11. Виды понятии
- •§ 12. Формально-логические отношения между понятиями по содержанию и по объему
- •§ 13. Обобщение и ограничение понятий
- •Суждение
- •§ 14. Сущность суждения и его строение
- •§ 15. Суждение и предложение
- •§ 16. Суждение и вопрос
- •13 В риторических вопросах по существу иет места неопределённости; они имеют смысл в качестве категорических суждений.
- •§ 17. Деление суждений по качеству и количеству
- •14 В таких эпистемических требованиях фиксируется неполнота знания о некотором предмете и содержится команда дополнить знания недостающими сведениями о нем.
- •§ 18. Объединенная классификация суждений по качеству и количеству
- •§ 19. Распределенность терминов в категорических суждениях
- •§ 20. Отношения между суждениями
- •§ 21. Деление суждений по модальности
- •§ 22. Сложные суждения
- •Глава III
- •§ 23. Общие замечания
- •§ 24. Закон тождества
- •17 Л е н и н в. И. Поли. Собр. Соч., т. 29, с. 233.
- •18 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 530.
- •§ 25» Закон противоречия
- •§ 26. .Закон исключенного третьего '
- •21 Л е н и н в. И. Поли. Собр. Соч., т. 11, с. 246,
- •§ 27. Закон достаточного основания
- •Глава IV
- •§ 28. Определение умозаключения
- •Б) 1. Стекло прозрачно. 2. Алмаз не стекло.
- •3. Алмаз непрозрачен.
- •1) Без нагревания металла нет его трения.
- •2) Всякий нагревающийся металл есть расширяющийся. Всякий металл, подвергающийся трению, есть нагревающийся.
- •3) Если металл нагревается, то он расширяется.
- •§ 29. Непосредственные умозаключения
- •2) Если сужение е истинно, то суждение о той же материи —
- •3) Если суждение о ложно, то суждение е той же материи—ложно. Суждение о «Некоторые приматы ие млекопитающие» — ложно.
- •4) Если суждение / ложно, то суждение а той же материи тоже
- •2) Если дано суждение s е р, то дано неявно суждение не-р t s Дано суждение s е р «Ни одна птица не есть млекопитающее»
- •§ 30. Простой категорический силлогизм
- •3) Если дано суждение s о р, то неявно дано суждение не-р I s Дано суждение s о р «Некоторые рыбы не летают».
- •§ 31. Сокращенные, сложные и сложносокращенные категорические силлогизмы
- •§ 32. Условные, разделительные и условно-разделительные силлогизмы
- •1) Если а, то в. 2) Если а, то в.
- •§ 33. Индуктивные умозаключения
- •5„ Есть р
- •См.: л е н и н в. И. Поли. Собр. Соч., т. 29, с. 162.
- •24 П а в л о в и. П. Поли. Собр. Соч., т. 11. М., 1946, с. 357.
- •§ 34. Аналогия
- •31 См.: Леви-Брюль л. Сверхъестественное в первобытном мышлении. М., 1937, с. 44—45.
- •32 См.: Жданов ю. А. Очерки методологии органической химии. М., 1960, с. 227.
- •33 Крупская н. К. Как Ленин работал над Марксом. М., 1933, с. 8,
- •Глава V
- •§ 35. Методы классификации объектов исследования
- •40 Л е н и н в. И. Поли. Собр. Соч., т. 4, с. 76.
- •42 Маркс к. И Энгельс ф. Соч. Т. 20, с. 13—14. V
- •§ 37. Доказательство
- •§ 38. Доказательство (продолжение: паралогизмы, софизмы и парадоксы)
- •43 Карийский м. И. Отрывок из литографированного издания «Ло- гика», 1884—1885 г. — в кн.: Избр. Труды русских логиков XIX в. М., 1956, с. 183.
- •44 Аристотель. Аналнтнкн. М., 1952, с. 180.
- •§ 39. Аксиоматический метод
- •§ 40. Индуктивные методы установления причинной связи явлений
- •45 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 544.
- •46 Об этом см., например; Маркс к. И Энгельс ф. Соч., т, 20, с 544.
- •47 Л е н и н в. И. Поли. Собр. Соч., т. 10, с. 165.
- •48 Л е н и н в. И. Поли. Собр. Соч., т. 18, с. 160.
- •Наблюдаемые случаи Предшествующие обстоятельства, при которых наступает интересующее явление Исследуемое явление
- •§ 41. Гипотеза
- •49 Маркс к- иЭнгельсФ. Соч., т. 20, с. 555.
- •60 Л е н и н в. И. Поли. Собр. Соч., т, 29, с, 195.
- •§ 42. Вероятностные методы в логике
- •62 Л е н и н в. И. Поли. Собр. Соч., т. 1, с. 136.
- •Часть вторая символическая логика
- •Глава 1
- •§ 1. Высказывания и формы высказываний
- •§ 2. Язык логики высказываний
- •1 От propositio (лат.) — высказывание: логику высказываний называют, также пропозициональной логикой.
- •CeNpqApKrNs
- •§ 3. Семантика логических знаков
- •Отрицание
- •Дизъюнкция
- •Импликация
- •Эквивалентность
- •Исключающая дизъюнкция
- •§ 4. Таблицы формул логики высказываний
- •§ 5. Равносильные формулы
- •I. Установить частным случаем какой из равносильностей (I)—(22) являются следующие пары формул:
- •II. С помощью таблиц обосновать следующие равносильности:
- •III. Проверить, являются ли равносильными следующие формулы:
- •§ 6. Правило равносильной замены
- •I. Пользуясь одним только свойством транзитивности отношения равносильности с помощью (1)—(22), доказать равносильность следующих формул:
- •II. Используя (1)—(27) и правило замены, доказать следующие равносильности:
- •§ 7. Полные системы логических знаков
- •III. Показать, что знака | достаточно для построения формулы, опреде- ляющей произвольную логическую функцию.
- •I. Построить, если возможно, формулы, двойственные следующим:
- •§ 9. Тождественно-истинные и тождествеиио-ложиые формулы
- •Глава II
- •§11. Проблема разрешения
- •§ 12, Конъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма
- •II. Привести к скнф следующие формулы:
- •§ 15. Логическое следование и логические следствия
- •3 См.: Гильберт д. И Аккерман в. Основы теоретической логики. М., 1947, с. 47,
- •I. Выяснить верно ли, что
- •§ 14. Сокращенная конъюнктивная нормальная форма
- •II. Используя условия из примера 2 (с. 257), узнать, кто совершил по- ступок, если известно, что только одно из этих утверждений ложно.
- •III. Методом приведения к совершеииой кнф решить следующую задачу.
- •§ 15. Дизъюнктивные нормальные формы
- •Глава III
- •§ 16. Понятие логического вывода
- •6 Ленин в, и, Поли, собр. Соч., т. 29, с, 172.
- •K делит m или п.
- •§ 17. Производные правила
- •§ 18. Чисто прямое доказательство
- •§19. Слабое косвенное доказательство
- •§ 20. Квазисильное косвенное доказательство
- •17 Mclus tollendo ponens (лат.) — способ утверждения посредством отрицания.
- •§ 21. Сильное (классическое) косвенное доказательство
- •19 Они рассматриваются ниже в § 21.
- •§ 22. Полнота классического исчисления высказываний
- •28 См. Выше, с. 289.
- •§ 23. Аксиоматическое представление логики высказываний
- •Глава IV
- •42 Полужирные прямые буквы s, р, м здесь и в дальнейшем используются в качестве метапеременных для силлогистических переменных.
- •Глава V
- •46 Отсюда и название этих переменных. В дальнейшем мы обычно опу- скаем прилагательное «предметная» («индивидная») перед существительным «переменная», если не возникает недоразумений.
- •47 Формулы логики высказываний называют также пропозициональными формулами.
- •48 Ниже в определении в дальнейшем мы обычно опускаем прилагатель- ное «предикатная» перед существительным «формула», когда из контекста ясно, о каких формулах идет речь.
- •Р, Fx, Gx, Rxy, Sxx, Uxyz.
- •Часть II. Зх —a-*—VxA
- •Глава VI
- •I. Показать, что в системе м° (или ее натуральном варианте) доказуема формула вида
- •II. Доказать в системе м (или ее натуральном варианте) следующие формулы:
- •III. Показать, что системы м° и Af' дополняют друг друга до Ма в сле- дующем смысле: присоединив к системе м в качестве аксиом формул вида
- •§ 1. Марксистская философия о мышлении —
- •Часть вторая
28 См. Выше, с. 289.
(3) (~АЛ~В)->~ (A VB) по Т32 22.
Согласно правилу ДЧ, если (1) и "(2)" доказуемы в Л/, то в Л/ Доказуема и формула
(4) Gf, Gj, .... G„-»(~A А~В).
Наконец, из формул (4) и (3) по правилу обобщенного силлогизма следует требуемая формула (II).
Случай IV. Формула F представима в виде А->В.
Случай IV. I. Под F написан символ логического значения «истинно». Тогда а) под А написан символ логического значения «ложно» или б) под В написан символ логического значения «истинно».
Если имеет место а), то по предположению в N доказуема формула
Gf, G2, Gn->~A. Кроме того, в Л7 доказуема формула
~ А -> (А -> В) Ср. Т34.23
По правилу обобщенного силлогизма из (1) и (2) следует Яфебуемая формула (I).
Если имеет место б), то в N доказуема формула
Gi, G2, G„->B. Очевидно также, что в N доказуема формула
В -у (А -> В) по ТЗ.24
По правилу обобщенного силлогизма из (1) и (2) следует требуемая формула (I).
Случай IV. 2. Под F написан символ логического значения «ложно». Тогда под А написан символ логического значения .«истинно», а под В—символ логического значения «ложно».
По предположению, в этом случае в N доказуемы формулы
G{, G|, ..., Grt-> А;
Of, G2, G„->~B.
Согласно правилу ДЧ если в N доказуемы формулы (1)" и [(2), то в N доказуема и формула
Gf, G2, Gn-(AA~B). ^ Кроме того, в N доказуема формула
(А А ~ В)-> ~ (А В) по ТЗЗ. 25
По обобщенному правилу силлогизма из (3) и (4) следует требуемая формула (II).
Рассмотрением данного частного случая завершается доказательство леммы 3.
Лемма 4. Пусть 1) Ei, Е2, Ега — перечень пропозициональных букв, из которых составлена формула F. Тогда, если F есть тождественно-истинная формула, то в системе N доказуема формула
fa V ~ Ei), (Е2 V ~ Е2) (Е„ V ~ Eft) -> F. (III)
Доказательство. Применяя к формуле (III) 2(n-1>-f-l Ц-2<"-2)-f-...-f-1 раз правило PC (правило доказательства разбором случаев26), мы сводим задачу на доказательство формулы (III) к построению доказательств каждой из 2п кратных импликаций, представимых в виде
G(, G'2 G„->F, (IV)
где Gi, G2, Gn — соответственная n-ка формулы F.
По лемме 3 для любого /(/= 1, 2, ..., 2п) формула (IV) доказуема в N.
Теперь уже нетрудно установить, что система N естественного вывода семантически полна.
Теорема 2. Если формула F тождественно-истинна, то F доказуема в N.
Доказательство. По лемме 4, если Ei, Е2, Е„ — перечень пропозициональных букв, из которых составлена формула F, то в N доказуема формула (III).
В то же время в системе N доказуема любая формула вида
Е( V~Ej.27
Отсюда следует, что формула F доказуема в N.
Доказательство теоремы 2 дает эффективный общий метод г(алгоритм), с помощью которого для любой тождественно-истинной формулы по ее таблице можно построить доказательство данной формулы в системе N.
Из теоремы 2 вытекает
Следствие. Если формулы А, В равносильны, то в системе N доказуема формула А ■*-* В.
Очевидно, что с помощью логической теоремы вида А-«->В мы можем показать, что в системе N производны правила следования вида
А В
В"5 А '
которые можно записать в виде одной схемы
А
Двойная черта в этой схеме указывает на то, что данное правило обратимо, т. е. его можно применять как сверху вниз, так и снизу вверх.
Понятно, что согласно следствию из теоремы 2 все применявшиеся до сих пор равносильности можно рассматривать в качестве обратимых производных правил системы N естественного вывода.
