- •Формальная логика
- •Издательство Ленинградского университета Ленинград 1977 Печатается по постановлению Редакционно-издательского совета Ленинградского университета
- •Рецензенты: рроф. А. В. Дроздов и кафедра философии Ленинградского педагогического института имени а. И. Герцена
- •§ 1. Марксистская философия о мышлении
- •§ 2. Мышление и язык
- •§ 3. Определение формальной логики
- •1 Слово «некоторые» употребляется в логике не в смысле «только некоторые», а в смысле «некоторые, а может быть и все».
- •2 Слово «предмет» употребляется в логике в том смысле, что вообще может служить объектом нашего рассуждения, размышления,
- •1) Все цветы суть растения. Все тюльпаны суть цветы.
- •2) Все материалисты в философии суть атеисты. Все марксисты суть материалисты в философии.
- •8 В изучении логических структур очень важно приобретение навыков в решении логических задач. С этой целью рекомендуется' книга проф. А.. И. Уемова «Упражнения и задачи по логике», м., 1961,
- •§ 4. Логика и психология
- •§ 5. Из истории логики
- •6 Маркс к. Н Энгельс ф. Соч., т. 20, с. 138.
- •§ 6. Практическое значение формальной логики
- •§ 7. Структура формальной логики
- •Основные логические формы и методы мышления
- •Глава I понятие § 8. Об определении и структуре понятия
- •1 Есть мысленное отражение в форме непосредственного единства общих существенных признаков предметов.
- •7 Слово «понятие» многозначно, мы его будем употреблять лишь в указанном смысле.
- •§ 9. Основные методы образования понятий
- •§ 10. Соотношение между содержанием и объемом понятия
- •§ 11. Виды понятии
- •§ 12. Формально-логические отношения между понятиями по содержанию и по объему
- •§ 13. Обобщение и ограничение понятий
- •Суждение
- •§ 14. Сущность суждения и его строение
- •§ 15. Суждение и предложение
- •§ 16. Суждение и вопрос
- •13 В риторических вопросах по существу иет места неопределённости; они имеют смысл в качестве категорических суждений.
- •§ 17. Деление суждений по качеству и количеству
- •14 В таких эпистемических требованиях фиксируется неполнота знания о некотором предмете и содержится команда дополнить знания недостающими сведениями о нем.
- •§ 18. Объединенная классификация суждений по качеству и количеству
- •§ 19. Распределенность терминов в категорических суждениях
- •§ 20. Отношения между суждениями
- •§ 21. Деление суждений по модальности
- •§ 22. Сложные суждения
- •Глава III
- •§ 23. Общие замечания
- •§ 24. Закон тождества
- •17 Л е н и н в. И. Поли. Собр. Соч., т. 29, с. 233.
- •18 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 530.
- •§ 25» Закон противоречия
- •§ 26. .Закон исключенного третьего '
- •21 Л е н и н в. И. Поли. Собр. Соч., т. 11, с. 246,
- •§ 27. Закон достаточного основания
- •Глава IV
- •§ 28. Определение умозаключения
- •Б) 1. Стекло прозрачно. 2. Алмаз не стекло.
- •3. Алмаз непрозрачен.
- •1) Без нагревания металла нет его трения.
- •2) Всякий нагревающийся металл есть расширяющийся. Всякий металл, подвергающийся трению, есть нагревающийся.
- •3) Если металл нагревается, то он расширяется.
- •§ 29. Непосредственные умозаключения
- •2) Если сужение е истинно, то суждение о той же материи —
- •3) Если суждение о ложно, то суждение е той же материи—ложно. Суждение о «Некоторые приматы ие млекопитающие» — ложно.
- •4) Если суждение / ложно, то суждение а той же материи тоже
- •2) Если дано суждение s е р, то дано неявно суждение не-р t s Дано суждение s е р «Ни одна птица не есть млекопитающее»
- •§ 30. Простой категорический силлогизм
- •3) Если дано суждение s о р, то неявно дано суждение не-р I s Дано суждение s о р «Некоторые рыбы не летают».
- •§ 31. Сокращенные, сложные и сложносокращенные категорические силлогизмы
- •§ 32. Условные, разделительные и условно-разделительные силлогизмы
- •1) Если а, то в. 2) Если а, то в.
- •§ 33. Индуктивные умозаключения
- •5„ Есть р
- •См.: л е н и н в. И. Поли. Собр. Соч., т. 29, с. 162.
- •24 П а в л о в и. П. Поли. Собр. Соч., т. 11. М., 1946, с. 357.
- •§ 34. Аналогия
- •31 См.: Леви-Брюль л. Сверхъестественное в первобытном мышлении. М., 1937, с. 44—45.
- •32 См.: Жданов ю. А. Очерки методологии органической химии. М., 1960, с. 227.
- •33 Крупская н. К. Как Ленин работал над Марксом. М., 1933, с. 8,
- •Глава V
- •§ 35. Методы классификации объектов исследования
- •40 Л е н и н в. И. Поли. Собр. Соч., т. 4, с. 76.
- •42 Маркс к. И Энгельс ф. Соч. Т. 20, с. 13—14. V
- •§ 37. Доказательство
- •§ 38. Доказательство (продолжение: паралогизмы, софизмы и парадоксы)
- •43 Карийский м. И. Отрывок из литографированного издания «Ло- гика», 1884—1885 г. — в кн.: Избр. Труды русских логиков XIX в. М., 1956, с. 183.
- •44 Аристотель. Аналнтнкн. М., 1952, с. 180.
- •§ 39. Аксиоматический метод
- •§ 40. Индуктивные методы установления причинной связи явлений
- •45 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 544.
- •46 Об этом см., например; Маркс к. И Энгельс ф. Соч., т, 20, с 544.
- •47 Л е н и н в. И. Поли. Собр. Соч., т. 10, с. 165.
- •48 Л е н и н в. И. Поли. Собр. Соч., т. 18, с. 160.
- •Наблюдаемые случаи Предшествующие обстоятельства, при которых наступает интересующее явление Исследуемое явление
- •§ 41. Гипотеза
- •49 Маркс к- иЭнгельсФ. Соч., т. 20, с. 555.
- •60 Л е н и н в. И. Поли. Собр. Соч., т, 29, с, 195.
- •§ 42. Вероятностные методы в логике
- •62 Л е н и н в. И. Поли. Собр. Соч., т. 1, с. 136.
- •Часть вторая символическая логика
- •Глава 1
- •§ 1. Высказывания и формы высказываний
- •§ 2. Язык логики высказываний
- •1 От propositio (лат.) — высказывание: логику высказываний называют, также пропозициональной логикой.
- •CeNpqApKrNs
- •§ 3. Семантика логических знаков
- •Отрицание
- •Дизъюнкция
- •Импликация
- •Эквивалентность
- •Исключающая дизъюнкция
- •§ 4. Таблицы формул логики высказываний
- •§ 5. Равносильные формулы
- •I. Установить частным случаем какой из равносильностей (I)—(22) являются следующие пары формул:
- •II. С помощью таблиц обосновать следующие равносильности:
- •III. Проверить, являются ли равносильными следующие формулы:
- •§ 6. Правило равносильной замены
- •I. Пользуясь одним только свойством транзитивности отношения равносильности с помощью (1)—(22), доказать равносильность следующих формул:
- •II. Используя (1)—(27) и правило замены, доказать следующие равносильности:
- •§ 7. Полные системы логических знаков
- •III. Показать, что знака | достаточно для построения формулы, опреде- ляющей произвольную логическую функцию.
- •I. Построить, если возможно, формулы, двойственные следующим:
- •§ 9. Тождественно-истинные и тождествеиио-ложиые формулы
- •Глава II
- •§11. Проблема разрешения
- •§ 12, Конъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма
- •II. Привести к скнф следующие формулы:
- •§ 15. Логическое следование и логические следствия
- •3 См.: Гильберт д. И Аккерман в. Основы теоретической логики. М., 1947, с. 47,
- •I. Выяснить верно ли, что
- •§ 14. Сокращенная конъюнктивная нормальная форма
- •II. Используя условия из примера 2 (с. 257), узнать, кто совершил по- ступок, если известно, что только одно из этих утверждений ложно.
- •III. Методом приведения к совершеииой кнф решить следующую задачу.
- •§ 15. Дизъюнктивные нормальные формы
- •Глава III
- •§ 16. Понятие логического вывода
- •6 Ленин в, и, Поли, собр. Соч., т. 29, с, 172.
- •K делит m или п.
- •§ 17. Производные правила
- •§ 18. Чисто прямое доказательство
- •§19. Слабое косвенное доказательство
- •§ 20. Квазисильное косвенное доказательство
- •17 Mclus tollendo ponens (лат.) — способ утверждения посредством отрицания.
- •§ 21. Сильное (классическое) косвенное доказательство
- •19 Они рассматриваются ниже в § 21.
- •§ 22. Полнота классического исчисления высказываний
- •28 См. Выше, с. 289.
- •§ 23. Аксиоматическое представление логики высказываний
- •Глава IV
- •42 Полужирные прямые буквы s, р, м здесь и в дальнейшем используются в качестве метапеременных для силлогистических переменных.
- •Глава V
- •46 Отсюда и название этих переменных. В дальнейшем мы обычно опу- скаем прилагательное «предметная» («индивидная») перед существительным «переменная», если не возникает недоразумений.
- •47 Формулы логики высказываний называют также пропозициональными формулами.
- •48 Ниже в определении в дальнейшем мы обычно опускаем прилагатель- ное «предикатная» перед существительным «формула», когда из контекста ясно, о каких формулах идет речь.
- •Р, Fx, Gx, Rxy, Sxx, Uxyz.
- •Часть II. Зх —a-*—VxA
- •Глава VI
- •I. Показать, что в системе м° (или ее натуральном варианте) доказуема формула вида
- •II. Доказать в системе м (или ее натуральном варианте) следующие формулы:
- •III. Показать, что системы м° и Af' дополняют друг друга до Ма в сле- дующем смысле: присоединив к системе м в качестве аксиом формул вида
- •§ 1. Марксистская философия о мышлении —
- •Часть вторая
24 П а в л о в и. П. Поли. Собр. Соч., т. 11. М., 1946, с. 357.
Важным преимуществом эксперимента над наблюдением является то, что эксперимент позволяет исследователю активно вмешиваться в наблюдаемые явления, воспроизводить их всякий раз, когда это необходимо для научного исследования, разлагать сложные события на более простые. Кроме того, в процессе самого эксперимента могут создаваться новые искусственные предметы (например, ,«лунная» тележка). Эксперимент, в отличие от наблюдения, дает возможность изучать то или другое явление в «чистом» виде, освобожденном от случайностей и тем самым вскрывать необходимые, причинно-следственные взаимосвязи.
Эксперимент ставится с целью либо доказательства (или опровержения) чего-то уже имеющегося, либо обнаружения новых причинно-следственных связей. Эксперимент обычно делят на материальный и идеальный (мысленный). Такое деление говорит о сложной, индуктивно-дедуктивной природе эксперимента. Эксперимент (как и наблюдение), который всегда преследует какую-либо цель, задачу, в силу этого не может обойтись без соответствующего дедуктивного знания, а сами результаты, т. е. знания, полученные в ходе эксперимента (наблюдения), индуктивные по своей сути, остаются непонятными вне дедуктивного обобщения.
Научная индукция как вид умозаключения, конечно, сильна тем, что каждый ее шаг связан с фактами, опытом, проверяемостью.
Но эти же достоинства научной индукции предопределяют и слабости ее, слабости, связанные с незавершенностью в общем и целом опытного познания, В. И. Ленин отмечает в этой связи: «Самая простая истина, самым простым, индуктивным путем полученная, всегда неполна, ибо опыт всегда незакончен».Отсюда — несостоятельность «всеиндуктивизма» как всеобщего и единственно верного метода познания. Поэтому ценность индукции не в том, чтобы абсолютизировав ее очевидную связь с фактами, наблюдением, экспериментом, противопоставить ее, например, дедукции, а в том, чтобы в каждом конкретном случае обнаружить значение индукции и как метода познания, и как формы мышления. Последнее неизбежно приводится к выводу о взаимосвязи индукции и дедукции, к взаимосвязи, в которой дедукция и индукция выступают необходимым средством достижения истины.
Взаимосвязь дедукции и индукции. Что является объективной основой индукции и дедукции?
Такой основой является взаимосвязь отдельного и общего, которую в свое время не смог объяснить Аристотель и плодотворный анализ которой стал возможным только в диалектическом материализме. Как в объективной действительности отдельное существует «в той связи, которая ведет к общему» 25
26, так и в мышлении индуктивное движение знания от единичного (частного) к общему с самого начала взаимосвязано с противоположным процессом движения знания от общего к единичному (частному). Так, например, то общее, из которого дедуцируется частное, само является зачастую продуктом индуктивного обобщения.
й Ленин В. И. Поли. собр. соч., т. 29, с. 162. 28 Там же, с. 318.
Индуктивному обобщению подлежат не любые свойства, отношения предметов объективного мира, а только такие, которые так или иначе связаны между собой, и индуктивное обобщение будет тем верней, чем на более глубоких внутренних су- щественных связях оно базируется, а это предполагает дедук- тивное знание, ибо последнее есть форма проявления сущности, развертывание необходимого знания. Таким образом, сам про- цесс индукции необъясним вне дедуктивного знания, что подчер- кивал Ф. Энгельс.27 !
В свете сказанного отпадает вопрос, что чему предшествует — индукция дедукций или дедукция индукции, как нельзя поставить вопрос: общее предшествует единичному или единичное общему? Это подтверждается и практикой человеческого познания. Уже выдающимся логиком М. И. Каринским (1840—1917) убедительно было доказано, что выводы по третьей фигуре силлогизма, ранее считавшиеся только дедуктивными, на самом деле предполагают индуктивное знание. Так, точке зрения противопоставления индукции и дедукции М. И. Каринский аргументированно выдвинул положение о логической связи между ними, обнаружив единство и даже некоторое сходство дедукции и индукции. Тем самым работами М. И. Карийского блестяще подтверждено указание Энгельса на то, что дедукция и индукция «связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга».
