- •Формальная логика
- •Издательство Ленинградского университета Ленинград 1977 Печатается по постановлению Редакционно-издательского совета Ленинградского университета
- •Рецензенты: рроф. А. В. Дроздов и кафедра философии Ленинградского педагогического института имени а. И. Герцена
- •§ 1. Марксистская философия о мышлении
- •§ 2. Мышление и язык
- •§ 3. Определение формальной логики
- •1 Слово «некоторые» употребляется в логике не в смысле «только некоторые», а в смысле «некоторые, а может быть и все».
- •2 Слово «предмет» употребляется в логике в том смысле, что вообще может служить объектом нашего рассуждения, размышления,
- •1) Все цветы суть растения. Все тюльпаны суть цветы.
- •2) Все материалисты в философии суть атеисты. Все марксисты суть материалисты в философии.
- •8 В изучении логических структур очень важно приобретение навыков в решении логических задач. С этой целью рекомендуется' книга проф. А.. И. Уемова «Упражнения и задачи по логике», м., 1961,
- •§ 4. Логика и психология
- •§ 5. Из истории логики
- •6 Маркс к. Н Энгельс ф. Соч., т. 20, с. 138.
- •§ 6. Практическое значение формальной логики
- •§ 7. Структура формальной логики
- •Основные логические формы и методы мышления
- •Глава I понятие § 8. Об определении и структуре понятия
- •1 Есть мысленное отражение в форме непосредственного единства общих существенных признаков предметов.
- •7 Слово «понятие» многозначно, мы его будем употреблять лишь в указанном смысле.
- •§ 9. Основные методы образования понятий
- •§ 10. Соотношение между содержанием и объемом понятия
- •§ 11. Виды понятии
- •§ 12. Формально-логические отношения между понятиями по содержанию и по объему
- •§ 13. Обобщение и ограничение понятий
- •Суждение
- •§ 14. Сущность суждения и его строение
- •§ 15. Суждение и предложение
- •§ 16. Суждение и вопрос
- •13 В риторических вопросах по существу иет места неопределённости; они имеют смысл в качестве категорических суждений.
- •§ 17. Деление суждений по качеству и количеству
- •14 В таких эпистемических требованиях фиксируется неполнота знания о некотором предмете и содержится команда дополнить знания недостающими сведениями о нем.
- •§ 18. Объединенная классификация суждений по качеству и количеству
- •§ 19. Распределенность терминов в категорических суждениях
- •§ 20. Отношения между суждениями
- •§ 21. Деление суждений по модальности
- •§ 22. Сложные суждения
- •Глава III
- •§ 23. Общие замечания
- •§ 24. Закон тождества
- •17 Л е н и н в. И. Поли. Собр. Соч., т. 29, с. 233.
- •18 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 530.
- •§ 25» Закон противоречия
- •§ 26. .Закон исключенного третьего '
- •21 Л е н и н в. И. Поли. Собр. Соч., т. 11, с. 246,
- •§ 27. Закон достаточного основания
- •Глава IV
- •§ 28. Определение умозаключения
- •Б) 1. Стекло прозрачно. 2. Алмаз не стекло.
- •3. Алмаз непрозрачен.
- •1) Без нагревания металла нет его трения.
- •2) Всякий нагревающийся металл есть расширяющийся. Всякий металл, подвергающийся трению, есть нагревающийся.
- •3) Если металл нагревается, то он расширяется.
- •§ 29. Непосредственные умозаключения
- •2) Если сужение е истинно, то суждение о той же материи —
- •3) Если суждение о ложно, то суждение е той же материи—ложно. Суждение о «Некоторые приматы ие млекопитающие» — ложно.
- •4) Если суждение / ложно, то суждение а той же материи тоже
- •2) Если дано суждение s е р, то дано неявно суждение не-р t s Дано суждение s е р «Ни одна птица не есть млекопитающее»
- •§ 30. Простой категорический силлогизм
- •3) Если дано суждение s о р, то неявно дано суждение не-р I s Дано суждение s о р «Некоторые рыбы не летают».
- •§ 31. Сокращенные, сложные и сложносокращенные категорические силлогизмы
- •§ 32. Условные, разделительные и условно-разделительные силлогизмы
- •1) Если а, то в. 2) Если а, то в.
- •§ 33. Индуктивные умозаключения
- •5„ Есть р
- •См.: л е н и н в. И. Поли. Собр. Соч., т. 29, с. 162.
- •24 П а в л о в и. П. Поли. Собр. Соч., т. 11. М., 1946, с. 357.
- •§ 34. Аналогия
- •31 См.: Леви-Брюль л. Сверхъестественное в первобытном мышлении. М., 1937, с. 44—45.
- •32 См.: Жданов ю. А. Очерки методологии органической химии. М., 1960, с. 227.
- •33 Крупская н. К. Как Ленин работал над Марксом. М., 1933, с. 8,
- •Глава V
- •§ 35. Методы классификации объектов исследования
- •40 Л е н и н в. И. Поли. Собр. Соч., т. 4, с. 76.
- •42 Маркс к. И Энгельс ф. Соч. Т. 20, с. 13—14. V
- •§ 37. Доказательство
- •§ 38. Доказательство (продолжение: паралогизмы, софизмы и парадоксы)
- •43 Карийский м. И. Отрывок из литографированного издания «Ло- гика», 1884—1885 г. — в кн.: Избр. Труды русских логиков XIX в. М., 1956, с. 183.
- •44 Аристотель. Аналнтнкн. М., 1952, с. 180.
- •§ 39. Аксиоматический метод
- •§ 40. Индуктивные методы установления причинной связи явлений
- •45 Маркс к. ИЭнгельс ф. Соч., т. 20, с. 544.
- •46 Об этом см., например; Маркс к. И Энгельс ф. Соч., т, 20, с 544.
- •47 Л е н и н в. И. Поли. Собр. Соч., т. 10, с. 165.
- •48 Л е н и н в. И. Поли. Собр. Соч., т. 18, с. 160.
- •Наблюдаемые случаи Предшествующие обстоятельства, при которых наступает интересующее явление Исследуемое явление
- •§ 41. Гипотеза
- •49 Маркс к- иЭнгельсФ. Соч., т. 20, с. 555.
- •60 Л е н и н в. И. Поли. Собр. Соч., т, 29, с, 195.
- •§ 42. Вероятностные методы в логике
- •62 Л е н и н в. И. Поли. Собр. Соч., т. 1, с. 136.
- •Часть вторая символическая логика
- •Глава 1
- •§ 1. Высказывания и формы высказываний
- •§ 2. Язык логики высказываний
- •1 От propositio (лат.) — высказывание: логику высказываний называют, также пропозициональной логикой.
- •CeNpqApKrNs
- •§ 3. Семантика логических знаков
- •Отрицание
- •Дизъюнкция
- •Импликация
- •Эквивалентность
- •Исключающая дизъюнкция
- •§ 4. Таблицы формул логики высказываний
- •§ 5. Равносильные формулы
- •I. Установить частным случаем какой из равносильностей (I)—(22) являются следующие пары формул:
- •II. С помощью таблиц обосновать следующие равносильности:
- •III. Проверить, являются ли равносильными следующие формулы:
- •§ 6. Правило равносильной замены
- •I. Пользуясь одним только свойством транзитивности отношения равносильности с помощью (1)—(22), доказать равносильность следующих формул:
- •II. Используя (1)—(27) и правило замены, доказать следующие равносильности:
- •§ 7. Полные системы логических знаков
- •III. Показать, что знака | достаточно для построения формулы, опреде- ляющей произвольную логическую функцию.
- •I. Построить, если возможно, формулы, двойственные следующим:
- •§ 9. Тождественно-истинные и тождествеиио-ложиые формулы
- •Глава II
- •§11. Проблема разрешения
- •§ 12, Конъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма
- •II. Привести к скнф следующие формулы:
- •§ 15. Логическое следование и логические следствия
- •3 См.: Гильберт д. И Аккерман в. Основы теоретической логики. М., 1947, с. 47,
- •I. Выяснить верно ли, что
- •§ 14. Сокращенная конъюнктивная нормальная форма
- •II. Используя условия из примера 2 (с. 257), узнать, кто совершил по- ступок, если известно, что только одно из этих утверждений ложно.
- •III. Методом приведения к совершеииой кнф решить следующую задачу.
- •§ 15. Дизъюнктивные нормальные формы
- •Глава III
- •§ 16. Понятие логического вывода
- •6 Ленин в, и, Поли, собр. Соч., т. 29, с, 172.
- •K делит m или п.
- •§ 17. Производные правила
- •§ 18. Чисто прямое доказательство
- •§19. Слабое косвенное доказательство
- •§ 20. Квазисильное косвенное доказательство
- •17 Mclus tollendo ponens (лат.) — способ утверждения посредством отрицания.
- •§ 21. Сильное (классическое) косвенное доказательство
- •19 Они рассматриваются ниже в § 21.
- •§ 22. Полнота классического исчисления высказываний
- •28 См. Выше, с. 289.
- •§ 23. Аксиоматическое представление логики высказываний
- •Глава IV
- •42 Полужирные прямые буквы s, р, м здесь и в дальнейшем используются в качестве метапеременных для силлогистических переменных.
- •Глава V
- •46 Отсюда и название этих переменных. В дальнейшем мы обычно опу- скаем прилагательное «предметная» («индивидная») перед существительным «переменная», если не возникает недоразумений.
- •47 Формулы логики высказываний называют также пропозициональными формулами.
- •48 Ниже в определении в дальнейшем мы обычно опускаем прилагатель- ное «предикатная» перед существительным «формула», когда из контекста ясно, о каких формулах идет речь.
- •Р, Fx, Gx, Rxy, Sxx, Uxyz.
- •Часть II. Зх —a-*—VxA
- •Глава VI
- •I. Показать, что в системе м° (или ее натуральном варианте) доказуема формула вида
- •II. Доказать в системе м (или ее натуральном варианте) следующие формулы:
- •III. Показать, что системы м° и Af' дополняют друг друга до Ма в сле- дующем смысле: присоединив к системе м в качестве аксиом формул вида
- •§ 1. Марксистская философия о мышлении —
- •Часть вторая
§ 20. Отношения между суждениями
Между суждениями А, Е, I, О с одинаковой материей (т. е. с одинаковыми терминами) существуют четыре вида отношений:
отношение подчинения, в котором находятся суждения А и /, Е и О. Суждения А и Е — подчиняющие, а суждения / и О — подчиненные. Если общее суждение истинно, то истинно одинаковое с ним по материи и качеству частное, но не наоборот. Например, из истинности частного суждения «Некоторые логические теории ацализируют высказывания, выражающие требования морали» не следует истинность общего суждения того же качества и с теми же терминами;
отношение противоречия между суждениями Е и /, А и О. Здесь суждения Е и /, а также А и О относятся друг к другу как утверждение и отрицание. Поэтому в каждом Из этих Двух суждений одно является обязательно истинным, а другое — обязательно ложным. Например, если суждение А («Все логические законы имеют методологическое значение») истинно, то суждение О той же материи — ложно. Если суждение О («Некоторые этические теории прогрессивны») истинно, то общее суждение той же материи ложно;
3
)
отношение
контрарности между
суждениями А
и
Е.
В
первом из них утверждается определенный
вид отношения S
к
Р,
а
именно, что объем S
полностью
содержится в объеме Р;
а
во втором, т. е. в суждении Е,
отрицается
как этот вид отношения между S
и
Р,
так
и отношение перекрещивания объемов S
и
Р,
т.
е. отношение противоположности не
сводится к отрицанию одного суждения
другим. Поэтому противоположные суждения
могут быть одновременно ложными. Пример:
а) «Все
целебные вещества органические» и б) «Ни одно целебное вещество не является органическим». При условии истинности одного из противоположных (контрарных) суждений другое обязательно ложно;
4) отношение субконтрарности— отношение между / и О. Эти суждения оба могут быть одновременно истинными, но не могут быть оба одновременно ложными.
Все рассмотренные отношения между суждениями показаны на рис. 14 (так называемый «логический квадрат»). Определенные логические отношения существуют также между суждениями, у которых одинаковые либо только предикаты, либо только субъекты. В первом случае существует отношение подчинения, если они имеют одно и то же качество, а субъект одного суждения является понятием, подчиненным по отношению к понятию субъекта другого. Пример: «Все планеты светят отраженным светом», «Юпитер светит отраженным светом».
Если такие суждения имеют разные качества, то они являются противоречащими.
Суждения с одинаковым субъектом противоположны, если противоположными являются их предикаты. Например, «Кант был последовательным материалистом» и «Кант был последовательным идеалистом». Эти суждения — противоположные, так как они оба могут быть ложными, как это и есть в данном примере, но не могут быть оба одновременно истинными.
Если у двух суждений с одинаковым субъектом предикаты — совместимые понятия, то они будут согласными и могут оказаться одновременно как ложными, так и истинными. Например, одновременно истинными являются суждения «Бородин был химиком» и «Бородин был композитором». Одновременно ложными суждениями являются: «Формальная логика изучает законы внешнего мира», «Формальная логика изучает общественно-экономические отношения людей».
Между суждениями совершенно разной материи логика никаких отношений указать не может.
