Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по теплопередачи (Конвективный теплообмен, Word).doc
Скачиваний:
571
Добавлен:
18.07.2014
Размер:
1.28 Mб
Скачать

2. Конвективный теплообмен

2.1. Основные понятия и определения

Под конвекцией понимают распространение теплоты в среде с неоднородным распределением температуры, осуществляемое макроскопическими частицами жидкости при ее перемещении.

Как мы уже с вами отмечаем, в чистом виде конвекция в природе не встречается, а всегда сопровождается теплопроводностью. Поэтому можно дать следующее определение конвективному теплообмену.

Конвективный теплообмен это совместный процесс переноса теплоты теплопроводностью и конвекцией в движущейся жидкости или газе.

Для практики наибольший интерес представляет случай конветивного теплообмена между твердым телом и соприкасающейся с ним жидкостью или газом. (Например радиатор автомобиля, батарея отопления дома, холодильник, отопление кабины и т. д.) Этот процесс называется конвективной теплоотдачейилипросто теплоотдачей.

Процесс конвективной теплоотдачи имеет наиболее широкое в тепловых машинах и аппаратах и является весьма сложным. Он зависит от многих факторов, основными из которых являются

1.Теплоотдача зависит от физических свойств температуры теплоносителя (жидкости) “tж” и стенки “ tст

Непосредственно на теплоотдачу имеют влияние следующие физические свойства жидкости (теплоносителя):

– λ, - коэффициент теплопроводности;

Cp, - теплоемкость;

– ρ, - плотность жидкости;

, - коэффициент температуропроводности, он характеризует темп изменения в различных точках жидкости по времени при нестационарных процессах;

вязкость жидкости– которая характеризует силы внутреннего трения между слоями жидкости. Различают динамический и кинематический коэффициенты вязкости.

µ, - динамический коэффициент вязкости;

ν=µ/ρ, - кинематический коэффициент вязкости;

коэффициент объемного расширения – он характеризует относительное изменение объема при нагревании жидкости на 1 К приp=constДля идеальных газов ,.

Перечисленные физические свойства для различных теплоносителей различны. Их значение приводятся в справочниках. При выборе их необходимо учитывать, что все они зависят от Т, а некоторые от давленияp.Так например µ для капельных жидкостей с повышением температуры уменьшается, а для газов увеличивается.

2. Теплоотдача зависит от природы возникновения и режима движения жидкости.Это связано с тем, что конвективный теплообмен зависит от распределения температур в потоке. В свою очередь характер температурного поля определяется распределением скоростей в потоке, т.е. скоростным полем, зависящем от режима течения.

По природе возникновения различают вынужденное и свободное движение жидкости.

Свободное движениевозникает за счет разности плотностей холодных и нагретых частей жидкости под действием гравитационных сил. (например вокруг нагретой трубы или над плитой наблюдается свободное движение воздуха вверх)

Вынужденное движениевызывается вентиляторами, насосами и другими возбудителями движения. Вынужденное движение всегда сопровождается свободным, однако при больших скоростях последним можно пренебречь.

При перемещении жидкости возможны 2 основных режима течения: ламинарный и турбулентный.

При ламинарном движенииотдельные струйки жидкости, перемещаясь в одном и том же направлении не перемешиваются (все частицы движутся параллельно стенкам канала в одном направлении).

При турбулентном режиметечения каждая частица потока, участвующая в общем поступательном движении, кроме того совершает и различные поперечные движения (происходит постоянные пульсации значения и изменения их мгновенных направлений). При пульсации скорости и перемещения вихрей из одной области течения в другую происходит перенос механической энергии. Если в движущемся потоке наблюдается неоднородностьtполя, то упомянутые явления приводят к переносу теплоты в следствии чего наблюдаются и температурные пульсации.

Однако при турбулентном режиме не вся масса жидкости движется завихренно. Около стенки из – за вязкого трения жидкости возникает ламинарный пограничный слой.

Этот пограничный слой, в котором скорость потока меняется от 0на стенке до скорости основного потока называетсягидродинамическим пограничным слоем.

Для него характерны малая толщина и большие поперечные градиенты скорости.

Режим движения жидкости и толщина пограничного слоя зависят от скорости потока (Re<2000- ламинарный;Re>104 - турбулентный); диаметра (размеров) канала, плотностиρи вязкости µ жидкости.

Режим движения жидкости определяет механизм переноса теплоты. При ламинарномдвижении теплота от потока жидкости к стенке переносится только теплопроводностью, т.к. частицы жидкости движутсяпараллельно стенкам. Учитывая малые значения коэффициента теплопроводностиλдля жидкостей и газов можно сделать вывод, что при ламинарном режиме теплоотдача будет слабой.

При турбулентномрежиме течения, благодаря перемешиванию жидкости теплота переносится конвекцией и теплопроводностью. Теплоотдача в этом случае будет более интенсивной. Однако огромное влияние на нее будет оказывать ламинарный пограничный подслой. Он будет составлять основное термическое сопротивление и задерживать теплоотдачу.Чем меньше δr - тем интенсивнее теплоотдача.

Наряду с гидродинамическим пограничным слоем в потоке может образовываться и тепловой пограничный слой.Это слой жидкости или газа непосредственно участвующий в теплоотдаче, благодаря чему температура в этом слое меняется отtcтдоtж. Тепловой пограничный слой характеризуется большим поперечным градиентом температуры, под действием которого и осуществляется перенос теплоты.

Тепловой пограничный слой может не совпадать по толщине с гидродинамическим. Например у вязких жидкостей толщина теплового пограничного слоя значительно меньше чем гидродинамического. У газов они практически совпадают.

3. Теплоотдача зависит от tcт - температуры твердой стенки, её размеров (площади поверхностей) и расположения её по отношению к потоку жидкости.

т.е. форма и расположение поверхности по отношению к потоку жидкости могут быть разными. В каждом конкретном случае возникают разные режимы течения и режимы теплоотдачи будут разными.

Таким образом мы можем сделать вывод, что тепловой поток при конвективной теплоотдаче является сложной функцией многих переменных.

Q=f(ω;tc;tж;λ;ρ;Cp;α;β;µ;l­1;l2;…;F­)