Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпаргалки / Шпора по КСЕ.doc
Скачиваний:
137
Добавлен:
27.06.2014
Размер:
391.68 Кб
Скачать

18. Элементарные частицы как объекты микромира. Физический «вакуум»

Частицы, входящие в состав прежде «неделимого» атома, называют элементарными. К ним относят и те частицы, которые получают в условиях эксперимента на мощных ускорителях. В настоящее время открыто более 350 микрочастиц.

Термин «элементарная частица» первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина «элементарный» применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но тем не менее исторически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частиц определяют по отношению к массе покоя электрона. Существуют элементарные частицы, не имеющие массы покоя, - фотоны. Остальные частицы по этому признаку делятся на лептоны – легкие частицы (электрон и нейтрино); мезоны – средние частицы с массой в пределах от одной до тысячи масс электрона; барионы – тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом.

По времени жизни частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильные частицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны и распадаются. Элементарные частицы со средним временем жизни называют резонансами. Вследствие краткого времени жизни они распадаются еще до того, как успеют покинуть атом или атомное ядро.

Помимо заряда, массы и времени жизни, элементарные частицы описываются понятиями, не имеющими аналогов в классической физике: понятием «спина», или собственного момента количества движения микрочастицы, и понятием «квантовых чисел», выражающих состояние элементарных частиц.

Согласно современным представлениям, все элементарные частицы делятся на два класса – фермионы (названные в честь Э.Ферми) и бозоны (названные в честь Ш.Бозе).

Всем элементарным частицам присущ корпускулярно-волновой дуализм: с одной стороны, частицы представляют собой единые, неделимые объекты, с другой стороны, они в определённом смысле «размазаны» в пространстве. При определённых условиях такая «размазанность» может принимать даже макроскопические размеры. Квантовая механика описывает частицу используя так называемую волновую функцию, которая определяет не где точно находится частица, а где бы она могла находиться и с какой вероятностью.

Физический вакуум

Вакуум не является абсолютной пустотой. В соответствии с квантовой теорией поля в вакууме непрерывно рождаются и умирают виртуальные частицы, которые при определённых условиях могут превращаться в реальные. Например, в ряде физических опытов из вакуума рождаются пары частица-античастица (с превращением энергии в массу). Согласно некоторым теориям, вакуум может находиться в разных состояниях с разными уровнями энергии. Современная наука пока не даёт удовлетворительного описания структуры и свойств вакуума.

  1. ТИПЫ ФИЗИЧЕСКИХ ВЗАИМОДЕЙСТВИЙ. ПРОБЛЕМА «СУПЕРСИЛЫ»

Элементарные частицы участвуют во всех видах известных взаимодействий. Различают 4 вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. При определенных условиях сильное взаимодействии е очень прочно связывает частицы, в результате чего образуются материальные системы с высокой энергией связи – атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц. Однако на ультрамалых расстояниях и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. По времени различных превращений можно судить о силе связанных с ними взаимодействий.

Все 4 взаимодействия необходимы и достаточны для построения разнообразного мира.

Современная физика пришла к выводу, что все 4 фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия – суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все 4 взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

  1. МЕГАМИР: СОВРЕМЕННОЕ АСТРОФИЗИЧЕСКОЕ И КОСМОЛОГИЧЕСКОЕ ПРЕДСТАВЛИНИЕ

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд; звезд и звездных систем – галактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации. Но вопрос об эволюции Вселенной не ставился.

В ньютоновской космологии возникали два парадокса, связанные с постулатом бесконечности Вселенной.

Первый парадокс получил название гравитационного. Его суть: если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно.

Второй парадокс называется фотометрическим: если существует бесконечное количество небесных тел, то должна быть бесконечная светимость неба, что не наблюдается.

Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А.Эйнштейном в общей теории относительности. Вселенная в космологической модели А.Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1917 году голландский астроном Виллем де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения.

В 1922 году русский математик и геофизик А.А.Фридман отбросит постулат классической космологии о стационарности Вселенной и получил решение уравнений Эйнштейна, описывающее Вселенную с «расширяющимся» пространством.

В 1927 году бельгийский аббат и ученый Ж.Леметр связал «расширение» пространства с данными астрономических наблюдений.

В 1929 году американский астроном Э.П.Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию – система галактик расширяется.

Расширение Вселенной считается научно установленным фактом, однако однозначно решить вопрос в пользу той или иной модели в настоящее время не представляется возможным.

  1. ПРОБЛЕМА ПРОИСХОЖДЕНИЯ И ЭВОЛЮЦИИ ВСЕЛЕННОЙ

Очевидно, что наша Вселенная расширяется, эволюционирует. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва. Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд лет.

В современной космологии начальную стадию эволюции Вселенной делят на «эры» (эра адронов, эра лептонов, фотонная эра, звездная эра). Звездная эра наступает через 1 млн лет после зарождения протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идее творения имеет очень сложное обоснование и связана с квантовой космологией. Сторонники инфляционной модели видят соответствие между этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации. Основные события в ранней стадии Вселенной разыгрывались за ничтожно малый промежуток времени. За период инфляционной стадии создавалось само пространство и время Вселенной, Вселенная раздулась от невообразимо малых квантовых размеров до невообразимо больших. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения. В период перехода от инфляционной стадии к фотонной состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые проаннигилировав, дали мощную вспышку излучения (света), осветившего космос. На этапе отделения вещества от излучения оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур – атомов, галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения – человека.

Уже с самого начала появления идеи расширяющейся и эволюционирующей Вселенной вокруг нее началась борьба.

Первой стала проблема начала и конца времени существования Вселенной, признание которой противоречило материалистически утверждениям о вечности, несотворимости и неуничтожимости и т.п. времени и пространства.

Самая большая трудность для ученых возникает при объяснении причин космической эволюции. Если отбросить частности, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма.

Для концепции самоорганизации материальная Вселенная является единственной реальностью, и никакой другой реальности помимо нее не существует. Эволюция Вселенной описывается в терминах самоорганизации: идет самопроизвольное упорядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок. Вопрос о цели космической эволюции в рамках концепции самоорганизации ставиться не может.

В рамках концепции креационизма, т.е. творения, эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существование во Вселенной развития от простых систем ко все более сложным и информационно емким, в ходе которого создавались условия для возникновения жизни и человека.

Среди современных физиков-теоретиков имеются сторонники как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно-технической картины мира, синтезирующей все достижения в области знания и веры.

  1. СОВРЕМЕННАЯ НАУКА О СТРУКТУРЕ ВСЕЛЕННОЙ

Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределением в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для Метагалактики характерна ячеистая (сетчатая, пористая) структура. Эти представления основываются на данных астрономических наблюдений. Возраст Метагалактики близок к возрасту Вселенной.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию. По форме галактики разделяются на три типа: эллиптические, спиральные и неправильные. Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики. В строении «правильных» галактик очень упрощенно можно выделить центральное ядро и сферическую периферию, представленную либо в форме огромных спиральных ветвей, либо в форме эллиптического диска, включающих наиболее горячие и яркие звезды и массивные газовые облака.

Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы состоят из двух, трех, четырех, пяти и больше звезд. Звезды объединены также в еще бóльшие группы – звездные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчитывают несколько сотен отдельных звезд, шаровые скопления – многие сотни тысяч.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, 9 больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. О механизме образования планет в Солнечной системе нет общепризнанных заключений. Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.