
- •2. Второе начало термодинамики. Энтропия изолированной, закрытой и открытой систем.
- •3.Первое начало термодинамики. Тепловые эффекты химических реакций. Закон Гесса.
- •Закон Гесса
- •4 Вопрос. Система и внешняя среда. Изолированная, закрытая, открытая системы. Внутренняя энергия системы.
- •7.Функция состояния
- •8 Вопрос. Понижение температуры замерзания и повышение температуры кипения в зависимости от их концентрации.
- •9.Связь между энтальпией и внутренней энергией.
- •10. Электродные процессы. Возникновение потенциала на границе раздела фаз.
- •11.Окислительно-восстановительные электроды и цепи. Определитель окислительно-восстановительных потенциалов.
- •12. Осмотическое давление. Закон Вант-Гоффа.
- •13. Ионная сила растворов, активность, коэффициент активность электролитов.
- •14. Потенциометрический метод определения рН. Электроды с водородной функцией.
- •16 .Электроды 1-го рода.
- •17. Электроды II-го рода.
- •18. Слабые электролиты. Константа электролитической диссоциации. Закон разведения.
- •19.Адсорбция на твёрдых поверхностях. Уравнение Фрейндлиха, уравнение Ленгмюра.
- •20.Определение концентрации ионов в растворе методом измерения эдс гальванических цепей.
- •21. Электролитическая диссоциация воды. Шкала кислотности по отношениюк воде. Ионное произведение воды. Понятие рН и использование егов агрономии.
- •22. Электроды первого и второго рода. Уравнение Нернста для этих электродов.
- •24. Концентрационные цепи.
- •24. Нормальные потенциалы и ряд напряжений
- •25.Буферные растворы, их состав и механизм действия.
- •26. Диффузионные потенциалы.
- •27.Закон независимости движения ионов.
- •28. Теория электролитической диссоциации.
- •29.Изменение давления насыщенного пара над растворителем и над раствором в зависимости от температуры. Первый закон Рауля.
- •30. Удельная электропроводность и электролитическая подвижность ионов.
- •31. Развитие понятий кислота и основание. Теория Брэнстеда.
- •32. Электрокинетические свойства коллоидных систем. Электрофорез и электроосмос. Электрокинетический потенциал.
- •33. Поверхностно-активные вещества. Смачивание и его мера. Значение смачивания при действии пестецидов для борьбы с сорняками, с/х вредителями и болезнями
- •34. Строение мицеллы лиофобных коллоидных растворов.
- •35. Методы получения и очистки коллоидных систем.
- •36.Молекулярн-кинетические свойства коллоидных систем: броуновское движение, диффузия. Осмос в коллоидных системах.
- •37.Тердинамический и электрокинетический потенциал.
- •38. Обменная адсорбция.
- •39. Кинетическая и агрегативная устойчивость коллоидных систем.
- •40. Нарушение устойчивости гидрофобных коллоидов. Правила значимости и валентности.
- •41. Вязкость коллоидных растворов. Зависимость вязкости растворов вмс от pH.
- •42. Коагуляция лиофобных коллоидных растворов электролитами.
- •43.Теория электролитической диссоциации
- •48.Основные особенности коллоидного состояния вещества.
- •49. Вязкость. Уравнение Эйнштейна н Думанского.
- •53.Гидрофильные и гидрофобные поверхности. Смачивание и его мера.
- •54. Ориентация молекул в поверхностном слое.
- •55. Поверхностное натяжение. Адсорбции на поверхности растворов. Уравнение Гиббса.
21. Электролитическая диссоциация воды. Шкала кислотности по отношениюк воде. Ионное произведение воды. Понятие рН и использование егов агрономии.
Вода обладает хорошей растворяющей способностью и вызывает электролитическую диссоциацию многих растворенных в ней веществ.
Вода является слабым электролитом и диссоциирует на катионы водорода и анионы гидроксила по уравнению:
Н2О Н+ + ОН-
Согласно закону действующих масс константа диссоциации воды будет равна:
К
=
Диссоциация воды очень мала (при 25С она равна 1.8 10-9), поэтому знаменатель в приведенном уравнении можно считать практически постоянным, и соотношение можно записать следующем образом:
[Н+ ] × [ОН-] =К ×[Н2О] = Кw = 10 -14
где Кw – ионное произведение воды. Таким образом, произведение концентрации ионов водорода и ионов гидроксила в любом водном растворе есть величина постоянная, называемая ионным произведением воды
Так как компоненты рассматриваемой системы сопряжены, то увеличение концентрации одного иона неизбежно связано с уменьшением концентрации другого. При этом из водного раствора не могут совершенно исчезнуть ни водородные, ни гидроксильные ионы. И при любой их концентрации ионное произведение останется постоянным – 10-14.
Концентрация ионов водорода в растворах представляет важный физико-химический фактор, определение ее имеет большое значение при изучении самых разнообразных физических, химических и биологических процессов.
В природных растворах и биологических жидкостях, которые количественно характеризуются как разбавленные растворы (С 0,1 М), активность ионов водорода колеблется примерно в пределах 10-3 С 10-9М, т.е. она очень мала и для практической работы ее удобно выражать через отрицательный десятичный логарифм активности и обозначать рН: рН = -lg аН+
Таким образом, водородным показателем – рН – называют величину, численно равную отрицательному десятичному логарифму активности (концентрации) ионов водорода. Логарифмируя ионное произведение воды, получаем: рН + рОН = 14
ЗНАЧЕНИЕ: В прямой зависимости от рН находится деятельность почвенных микроорганизмов. Концентрация ионов водорода имеет большое значение для развития растений. Агрономы применяют известкование с целью повышения плодородия почв. Концентрация водородных ионов почв оказывает влияние не только на процессы жизнедеятельности растений, но и на распределение и активность микроорганизмов, населяющих почву, и даже на физико-химическое состояние почвенных коллоидов.
22. Электроды первого и второго рода. Уравнение Нернста для этих электродов.
I рода. К ним относятся электроды, состоящие из металлической пластинки, погруженной в раствор соли этого же металла, напимер Zn|Zn2+, Cu|Cu2+, и водородный электрод. Эти электроды обратимы по катиону. Потенциал электродов первого рода связан с активностью катиона в растворе уравнением Нернста:
,
где
(«эпсилон»)
- электродный потенциал, В; 0
– стандартный (нормальный) потенциал,
В;R
– универсальная газовая постоянная –
8,31 Дж/моль К;Т – абсолютная температура,
К; F
- число Фарадея – 96500 Кл/моль; n
– валентность ионов металла; 2,303 –
модуль перехода от натурального логарифма
к десятичному;-
активность ионов металла в растворе.
II рода. К ним относятся электроды, в которых металл покрыт слоем малорастворимой соли этого металла и находится в растворе, насыщенном этой солью и содержащем другую легкорастворимую соль с тем же анионом. ПРИМЕР: каломельный (Hg|Hg2Cl2, KCl) и хлорсеребрянный (Ag|AgCl, KCl) электроды. Эти электроды обратимы относительно катиона и аниона, но регулируется лишь концентрация аниона, таким образом можно влиять на их электродный потенциал. = Электроды сравнения, т.к. они имеют постоянное значение потенциала. К электродам сравнения относятся каломельный, хлорсеребрянный и водородный.