Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия атеросклероза

.pdf
Скачиваний:
47
Добавлен:
20.06.2014
Размер:
4.45 Mб
Скачать

270 Imran Rashid et al.

these reactions, could play an adjunct role to existing approaches aimed at optimizing glycemic control and treating lipid abnormalities [6].

Acknowledgment: The authors gratefully acknowledge financial support from the Diabetes Australia Research Trust, the National Health and Medical Research Council, and the Australian Research Council.

References

1.WHO: The Cost of Diabetes. WHO, Geneva, 2003.

2.WHO: Cardiovascular Disease: Prevention and Control. WHO, Geneva, 2003.

3.Australian Institution of Health and Welfare: Australia’s Health 2002. AIHW, Canberra, 2002.

4.Zimmet P, Alberti KGMM, Shaw J: Global and societal implications of the diabetes epidemic. Nature 414: 782–787, 2001.

5.Dunstan DW, Zimmet PZ, Welborn TA, de Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, Atkins R, Shaw JE: The rising prevalence of diabetes and impaired glucose tolerance. Diabetes Care 25: 829–834, 2002.

6.Sowers JR: Effects of statins on the vasculature: implications for aggressive lipid management in the cardiovascular metabolic syndrome. Am J Cardiol 91: 14–22, 2003.

7.Keen H, Clark C, Laakso M: Reducing the burden of diabetes: managing cardiovascular disease. Diabetes Metab Res Rev 15: 186–196, 1999.

8.Jenkins AJ, Best JD, Klein RL, Lyons TJ: Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev 20: 349–368, 2004.

9.Sowers JR, Lester MA: Diabetes and cardiovascular disease. Diabetes Care 22: 14C–20C, 1999.

10.Eaton JW, Dean RT: Diabetes and atherosclerosis. In: Dean RT, Kelly DT (eds), Atherosclerosis—Gene Expression, Cell Interactions, and Oxidation. Oxford University Press, Oxford, 2000, pp 24–45.

11.Creager MA, Luscher TF, Cosentino F, Beckman JA: Diabetes and vascular disease. Pathophysiology, clinical consequences and medical therapy: Part I. Circulation 108: 1527–1532, 2003.

12.Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820, 2001.

13.The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependant diabetes mellitus. N Engl J Med 329: 977–986, 1993.

14.Nathan DM, Lachin J, Cleary P, Orchard T, Brillon DJ, Backlund JY, O’Leary DH, Genuth S (DCCT Research Group): Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 348: 2294–2303, 2003.

15.Marshall SM, Barth JH: Standardization of HbA1c measurements—consensus statement. Diabetes Med 17: 5–6, 2000.

Chapter 12. The Roles of Protein Glycation, Glycoxidation and AGE

271

16.UK Prospective Studies Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–883, 1998.

17.Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ: Binding and

modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N-α-acetylarginine, N-α-acetylcysteine, and N-α-acetyllysine, and bovine serum albumin. J Biol Chem 269: 32299–32305, 1994.

18.Zeng J, Davies MJ: Evidence for the formation of adducts and S-(car- boxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides and proteins. Chem Res Toxicol 18: 1232–1242, 2005.

19.Ahmed N: Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67: 3–12, 2005.

20.Knott HM, Brown BE, Davies MJ, Dean RT: Glycation and glycoxidation of low density lipoproteins by glucose and low molecular weight aldehydes: formation of modified and oxidised proteins. Eur J Biochem 270: 3572–3582, 2003.

21.Wolff SP, Dean RT: Glucose autoxidation and protein modification—the potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245: 243–250, 1987.

22.Wolff SP, Dean RT: Monosaccharide autoxidation: a potential source of oxidative stress in diabetes? Formation and reactions of peroxides in biological systems. Bioelectrochem Bioenerg 18: 283–293, 1987.

23.Hunt JV, Dean RT, Wolff SP: Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256: 205–212, 1988.

24.Hunt JV, Bottoms MA, Mitchinson MJ: Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein–glucose adduct oxidation. Biochem J 291: 529–535, 1993.

25.Fu M-X, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW: Glycation, glycoxidation, and cross-linking of late stages of the Maillard reaction. Diabetes 43: 676–683, 1994.

26.Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S: Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49: 1714–1723, 2000.

27.Khaw K-T, Wareham N, Bingham S, Luben R, Welch A, Day N: Association of

hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann Intern Med 141: 413–420, 2004.

28.Lowe LP, Liu K, Greenland P, Metzger BE, Dyer AR, Stamler J: Diabetes, asymptomatic hyperglycaemia, and 22-year mortality in black and white men: the Chicago Heart Association Detection Project in Industry Study. Diabetes Care 20: 163–169, 1997.

29.Moss SE, Klein R, Klein BEK, Meuer SM: The association of glycemia and cause-specific mortality in a diabetic population. Arch Intern Med 154: 2473–2479, 1994.

30.Kuusisto J, Mykkanen L, Pyorala K, Laakso M: NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 43: 960–967, 1994.

31.Klein R: Hyperglycaemia and microvascular and macrovascular disease in diabetes. Diabetes Care 18: 258–268, 1995.

272Imran Rashid et al.

32.Standl E, Balletshofer B, Dahl B, Weichenhain B, Stiegler H, Hormann A, Holle

R:Predictors of 10-year macrovascular and overall mortality in patients with NIDDM: the Munich General Practioner Project. Diabetologia 39: 1540–1545, 1996.

33.Khaw K-T, Wareham N, Luben R, Bingham S, Oakes S, Welch A, Day N: Glycated haemogloblin, diabetes, and mortality in men in the Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). Brit Med J 322: 1–6, 2001.

34.Beks PHJ, Mackaay AJC, de Vries H, de Neeling JND, Bouter LM: Carotid artery stenosis is related to blood glucose level in an elderly Caucasian population: the Hoorn study. Diabetologia 40: 290–298, 1997.

35.Jensen-Urstad KJ, Reichard PG, PRofors JS, Lindblad LE, Jensen-Urstad MT: Early atherosclerosis is retarded by improved long-term blood glucose control inpatients with IDDM. Diabetes 45: 1253–1258, 1996.

36.McLellan AC, Phillips SA, Thornalley PJ: The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem 206: 17–23, 1992.

37.McLellan AC, Thornalley PJ, Benn J, Sonksen PH: Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci 87: 21–29, 1994.

38.Thornalley PJ, Hooper NI, Jennings PE, Florkowski CM, Jones AF, Lunec J, Barnett AH: The human red blood cell glyoxalase system in diabetes mellitus. Diabetes Res Clin Pract 7: 115–120, 1989.

39.Niwa T: 3-Deoxyglucosone: metabolism, analysis, biological activity, and clinical implication. J Chromatogr B 731: 23–36, 1999.

40.Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R: Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375: 581–592, 2003.

41.Dean RT, Fu S, Stocker R, Davies MJ: Biochemistry and pathology of radicalmediated protein oxidation. Biochem J 324: 1–18, 1997.

42.Grant AJ, Jessup W, Dean RT: Accelerated endocytosis and incomplete catabolism of radical-damaged protein. Biochim Biophys Acta 1134: 203–209, 1992.

43.Linton S, Davies MJ, Dean RT: Protein oxidation and ageing. Exp Gerontol 36: 1503–1518, 2001.

44.Dunlop RA, Rodgers KJ, Dean RT: Recent developments in the intracellular degradation of oxidized proteins. Free Radic Biol Med 33: 894–906, 2002.

45.Degenhardt TP, Thorpe SR, Baynes JW: Chemical modification of proteins by methylglyoxal. Cell Mol Biol 44: 1139–1145, 1998.

46.Schleicher ED, Wagner E, Nerlich AG: Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99: 457–468, 1997.

47.Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW: AGE-dependent accumulation of N-epsilon-(carboxymethyl)lysine and N-epsilon-(carboxymethyl) hydroxylysine in human skin collagen. Biochemistry 30: 1205–1210, 1991.

48.Wells-Knecht MC, Lyons TJ, McCance DR, Thorpe SR, Baynes JW: AGEdependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. J Clin Invest 100: 839–846, 1997.

Chapter 12. The Roles of Protein Glycation, Glycoxidation and AGE

273

49.Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW: Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91: 2463–2469, 1993.

50.Meng J, Sakata N, Takebayashi S, Asano T, Futata T, Nagai R, Ikeda K, Horiuchi S, Myint T, Taniguchi N: Glycoxidation on aortic collagen from STZinduced diabetic rats and its relevance to vascular damage. Atherosclerosis 136: 355–365, 1998.

51.Pokupec R, Kalauz M, Turk N, Turk Z: Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses. Graefes Archiv Clin Exp Ophthalmol 241: 378–384, 2003.

52.Stocker R, Keaney JR: Role of oxidative modifications in atherosclerosis. Physiol Rev: 1381–1478, 2004.

53.Baynes JW, Thorpe SR: Role of oxidative stress in diabetic complications—a new perspective on an old paradigm. Diabetes 48: 1–9, 1999.

54.Vogt BW, Schleicher ED, Wieland OH: Epsilon-Amino-lysine-bound glucose in human tissues obtained at autopsy. Increase in diabetes mellitus. Diabetes 31: 1123–1127, 1982.

55.Vishwanath V, Frank KE, Elmets CA, Dauchot PJ, Monnier VM: Glycation of skin collagen in type I diabetes mellitus. Correlation with long-term complications. Diabetes 35: 916–921, 1986.

56.Imanaga Y, Sakata N, Takebayashi S, Matsunaga A, Sasaki J, Arakawa K, Nagai R, Horiuchi S, Itabe H, Takano T: In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis 150: 343–355, 2000.

57.Miyata S, Liu BF, Shoda H, Ohara T, Yamada H, Suzuki K, Kasuga M: Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes. J Biol Chem 272: 4037–4042, 1997.

58.Portero-Otin M, Pamplona R, Bellmunt MJ, Bergua M, Prat J: Glycaemic control and in vivo non-oxidative Maillard reaction: urinary excretion of pyrraline in diabetes patients. Eur J Clin Invest: 767–773, 1997.

59.Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K: Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol 147: 654–667, 1995.

60.Nagai R, Hayashi CM, Xia L, Takeya M, Horiuchi S: Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glyco- laldehyde-modified proteins. J Biol Chem 277: 48905–48912, 2002.

61.Shamsi FA, Partal A, Sady C, Glomb MA, Nagaraj RH: Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. J Biol Chem 273: 6928–6936, 1998.

62.Morgan PE, Dean RT, Davies MJ: Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys 403: 259–269, 2002.

63.Li AC, Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med 8: 1235–1242, 2002.

64.Takahashi K, Takeya M, Sakashita N: Multifunctional role of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35: 179–203, 2002.

274Imran Rashid et al.

65.Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 92: 8264–8268, 1995.

66.Boring L, Gosling J, Cleary M, Charo IF: Decreased lesion formation in CCR2–/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394: 894–897, 1998.

67.Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF: MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 103: 773–778, 1999.

68.Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA: A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic Lesions of LDL receptor-deficient mice. J Clin Invest 101: 353–363, 1998.

69.Tabas I: Nonoxidative modifications of lipoproteins in atherogenesis. Annu Rev Nutr 19: 123–139, 1999.

70.Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9: 471–474, 1998.

71.Tabas I: Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110: 905–911, 2002.

72.Vaino S, Ikonen E: Macrophage cholesterol transport: a critical player in foam cell formation. Ann Med 35: 146–155, 2003.

73.Shiomi M, Yamada S, Ito T: Atheroma stabilizing effects of simvastatin due to depression of macrophages or lipid accumulation in the atheromatous plaques of coronary plaque-prone WHHL rabbits. Atherosclerosis 178: 287–294, 2005.

74.Kawamura M, Heinecke JW, Chait A: Increased uptake of alpha-hydroxy alde- hyde-modified low density lipoprotein by macrophage scavenger receptors. J Lipid Res 41: 1054–1059, 2000.

75.Schalkwijk CG, Vermeer MA, Stehouwer CD, te Koppele J, Princen HM, van Hinsbergh VW: Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein. Biochim Biophys Acta 1394: 187–198, 1998.

76.Hunt JV, Smith CC, Wolff SP: Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420–1424, 1990.

77.Mowri H-O, Frei B, Keaney JF: Glucose enhancement of LDL oxidation is strictly metal ion dependent. Free Radic Biol Med 29: 814–824, 2000.

78.Millican SA, Bagga M, Eddy R, Mitchinson MJ, Hunt JV: Effect of glucose-medi- ated LDL oxidation on the P388D1 macrophage-like cell line. Atherosclerosis 129: 17–25, 1997.

79.Kawamura M, Heinecke JW, Chait A: Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxidedependant pathway. J Clin Invest 94: 771–778, 1994.

80.Kimura H, Minakami H, Kimura S, Sakurai T, Nakamura T, Kurashige S, Nakano M, Shoji A: Release of superoxide radicals by mouse macrophages stimulated by oxidative modification of glycated low density lipoproteins. Atherosclerosis 118: 1–8, 1995.

81.Brown BE, Dean RT, Davies MJ: Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipidladen foam cells. Diabetologia 48: 361–369, 2005.

82.Sakata N, Miyamoto K, Meng J, Tachikawa Y, Imanaga Y, Takebayashi S, Furukawa T: Oxidative damage of vascular smooth muscle cells by the glycated protein-cupric ion system. Atherosclerosis 136: 263–274, 1998.

Chapter 12. The Roles of Protein Glycation, Glycoxidation and AGE

275

83.Stadler N, Lindner RA, Davies MJ: Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol 24: 949–954, 2004.

84.Schleicher E, Deufel T, Wieland OH: Non-enzymatic glycosylation of human serum lipoproteins. Elevated epsilon-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett 129: 1–4, 1981.

85.Lyons TJ, Klein RL, Baynes JW, Stevenson HC, Lopes-Virella MF: Stimulation of cholesteryl ester synthesis in human monocyte-derived macrophages by lowdensity lipoproteins from type 1 (insulin-dependent) diabetic patients: the influence of non-enzymatic glycosylation of low-density lipoproteins. Diabetologia 30: 916–923, 1987.

86.Klein RL, Laimeins M, Lopes-Virella MF: Isolation, characterisation, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from Type 1 diabetic patients and nondiabetic patients. Diabetes 44: 1093–1098, 1995.

87.Sobenin IA, Tertov VV, Orekhov AN: Atherogenic modified LDL in diabetes. Diabetes 45(Suppl 3): S35–S39, 1996.

88.Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H: Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90: 6434–6438, 1993.

89.Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, Cerami A, Vlassara H: Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA 91: 9441–9445, 1994.

90.Steinbrecher UP, Witztum JL: Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 33: 130–134, 1984.

91.Stitt AW, He C, Friedman S, Scher L, Rossi P, Ong L, Founds H, Li YM, Bucala R, Vlassara H: Elevated AGE-modified apoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol Med 3: 617–627, 1997.

92.Bucala R, Mitchell R, Arnolds K, Innerarity T, Vlassara H, Cerami A: Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 270: 10828–10832, 1995.

93.Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, Steinberg D: Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes 4: 283–291, 1982.

94.Edwards IJ, Wagner JD, Litwak KN, Rudel LL, Cefalu WT: Glycation of plasma low density lipoproteins increases interaction with arterial proteoglycans. Diabetes Res Clin Pract 46: 9–18, 1999.

95.Curtiss LK, Witztum JL: A novel method of generating region-specific monoclonal antibodies to modified proteins: application to the identification of human glucosylated low density lipoproteins. J Clin Invest 72: 1427–1438, 1983.

96.Virella G, Thorpe SR, Alderson NL, Stephan EM, Atchley D, Wagner F, Lopes-Virella MF (DCCT Group): Autoimmune response to advanced glycosylation end-products of human LDL. J Lipid Res 44: 487–493, 2003.

97.Lopes-Virella MF, Virella G: Cytokines, modified lipoproteins, and arteriosclerosis in diabetes. Diabetes 45(Suppl 3): S40–S44, 1996.

276Imran Rashid et al.

98.Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT: Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with antilow density lipoprotein antibodies. Arterioscler Thromb 11: 1356–1367, 1991.

99.Edwards IJ, Terry JG, Bell-Farrow AD, Cefalu WT: Improved glucose control decreases the interaction of plasma low-density lipoproteins with arterial proteoglycans. Metab Clin Exp 51: 1223–1229, 2002.

100.Proctor SD, Pabla CK, Mamo JCL: Arterial intimal retention of pro-atherogenic lipoproteins in insulin deficient rabbits and rats. Atherosclerosis 1449: 315–322, 2000.

101.Williams KJ: The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15: 551–561, 1995.

102.Hoff HF, Morton RE: Lipoproteins containing apoB extracted from human aorta. Structure and function. Ann NY Acad Sci 454: 183–194, 1985.

103.Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK: Glycation of highdensity lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metab Clin Exp 48: 139–143, 1999.

104.Passarelli M, Shimabukuro AFM, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJF, Quintao ECR: Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta 301: 119–134, 2000.

105.Duell PB, Oram JF, Bierman EL: Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 40: 377–384, 1991.

106.Fievet C, Theret N, Shojaee N, Duchateau P, Castro G, Ailhaud G, Drouin P, Fruchart J-C: Apolipoprotein A-I-containing particles and reverse cholesterol transport in IDDM. Diabetes 41: 81–85, 1992.

107.Quintao ECR, Medina WL, Passarelli M: Reverse cholesterol transport in diabetes mellitus. Diabetes Metab Res Rev 16: 237–250, 2000.

108.Borggreve SE, de Vries R, Dullaart RPF: Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 33: 1051–1069, 2003.

109.Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye K-A, Barter PJ: Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111: 1543–1550, 2005.

110.Makita T, Tanaka A, Nakano T, Nakajima K, Numano F: Importance of glycation in the acceleration of low density lipoprotein (LDL) uptake into macrophages in patients with diabetes mellitus. Int Angiol 18: 149–153, 1999.

111.Ravandi A, Kuksis A, Shaikh NA: Glucosylated glycerophosphoethanolamines are the major LDL glycation products and increase LDL susceptibility to oxidation. Arterioscler Thromb Vasc Biol 20: 467–477, 2000.

112.Ravandi A, Kuksis A, Shaikh NA: Glycated phosphatidylethanolamine promotes macrophage uptake of low density lipoprotein and accumulation of cholesteryl esters and triacylglycerols. J Biol Chem 274: 16494–16500, 1999.

113.Jinnouchi Y, Sano H, Nagai R, Hakamata H, Kodama T, Suzuki H, Yoshida M, Ueda S, Horiuchi S: Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor. J Biochem (Tokyo) 123: 1208–1217, 1998.

Chapter 12. The Roles of Protein Glycation, Glycoxidation and AGE

277

114.Haberland ME, Olch CL, Folgelman AM: Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages. J Biol Chem 259: 11305–11311, 1984.

115.Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S: Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22: 1649–1654, 2002.

116.Mann GE, Yudilevich DL, Sobrevia L: Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev: 183–252, 2003.

117.Giardino I, Edelstein D, Brownlee M: Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 94: 110–117, 1994.

118.Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP: AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37: 586–600, 1998.

119.Altannavch TS, Roubalova K, Kucera P, Andel M: Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Rev 53: 77–82, 2004.

120.Barter PJ, Baker PW, Rye KA: Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol 13: 285–288, 2002.

121.Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267: 14998–15004, 1992.

122.Schmidt AM, Yan SD, Yan SF, Stern DM: The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108: 949–955, 2001.

123.Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA: Phylogenetic perspectives in innate immunity. Science 284: 1313–1318, 1999.

124.Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 16: 225–260, 1998.

125.Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signalling pathways and modulate gene expression. J Biol Chem 274: 31740–31749, 1999.

126.Wautier JL, Schmidt AM: Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95: 233–238, 2004.

127.Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D: Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96: 1395–1403, 1995.

128.Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL: Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280: E685–E694, 2001.

129.Valencia JV, Mone M, Zhang J, Weetall M, Buxton FP, Hughes TE: Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE-BSA. Diabetes 53: 743–751, 2004.

130.Valencia JV, Mone M, Koehne C, Rediske J, Hughes TE: Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce

278 Imran Rashid et al.

inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products. Diabetologia 47: 844–852, 2004.

131.Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S, Plachky J, Grone HJ, Kurschus FC, Schmidt AM, Yan SD, Martin E, Schleicher E, Stern DM, Hammerling GG, Nawroth PP, Arnold B: Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113: 1641–1650, 2004.

132.Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP: The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198: 1507–1515, 2003.

133.Gordon S: Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930, 2002.

134.Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76: 333–337, 1979.

135.Araki N, Higashi T, Mori T, Shibayama R, Kawabe Y, Kodama T, Takahashi K, Shichiri M, Horiuchi S: Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end products of the Maillard reaction. Eur J Biochem 230: 408–415, 1995.

136.Zhang H, Yang Y, Steinbrecher UP: Structural requirements for the binding of modified proteins to the scavenger receptor of macrophages. J Biol Chem 268: 5535–5542, 1993.

137.Miyazaki A, Nakayama H, Horiuchi S: Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med 12: 258–262, 2002.

138.Nozaki S, Kashiwagi H, Yamashita S, Nakagawa T, Kostner B, Tomiyama Y, Nakata A, Ishigami M, Miyagawa J, Kameda-Takemura K: Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest 96: 1859–1865, 1995.

139.Nakata A, Nakagawa Y, Nishida M, Nozaki S, Miyagawa J, Nakagawa T, Tamura R, Matsumoto K, Kameda-Takemura K, Yamashita S, Matsuzawa Y: CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta. Arterioscler Thromb Vasc Biol 19: 1333–1339, 1999.

140.Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277: 49982–49988, 2002.

141.Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S, Nakayama H: Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 276: 13348–13355, 2001.

142.Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T: An endothelial receptor for oxidized low-density lipoprotein. Nature 386: 73–77, 1997.

143.Jono T, Miyazaki A, Nagai R, Sawamura T, Kitamura T, Horiuchi S: Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). FEBS Lett 511: 170–174, 2002.

Chapter 12. The Roles of Protein Glycation, Glycoxidation and AGE

279

144.Li D, Mehta JL: Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101: 2889–2895, 2000.

145.Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T: Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275: 12633–12638, 2000.

146.Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL: LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 107: 612–617, 2003.

147.Chen M, Nagase M, Fujita T, Narumiya S, Masaki T, Sawamura T: Diabetes enhances lectin-like oxidized LDL receptor-1 (LOX-1) expression in the vascular endothelium: possible role of LOX-1 ligand and AGE. Biochem Biophys Res Commun 287: 962–968, 2001.

148.Li L, Sawamura T, Renier G: Glucose enhances human macrophage LOX-1 expression: role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res 94: 892–901, 2004.

149.Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Cordone S, Gradini R, Barsotti P, Liu FT, Di Mario U, Pugliese G: Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int (Suppl 77): S31–S39, 2000.

150.Pugliese G, Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Lenti L, Sale P, Gradini R, Liu FT, Di Mario U: The diabetic milieu modulates the advanced glycation end product–receptor complex in the mesangium by inducing or upregulating galectin-3 expression. Diabetes 49: 1249–1257, 2000.

151.Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U: Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 15: 2471–2479, 2001.

152.Esposito C, Gerlach H, Brett J, Stern D, Vlassara H: Endothelial receptormediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 170: 1387–1407, 1989.

153.Kouroedov A, Eto M, Joch H, Volpe M, Luscher TF, Cosentino F: Selective inhibition of protein kinase C beta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 110: 91–96, 2004.

154.Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, Szabo C, Ceriello A: Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase. J Thromb Haemost: 1453–1459, 2004.

155.Vlassara H, Fuh H, Donnelly T, Cybulsky M: Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1: 447–456, 1995.

156.Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS: Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 25: 1055–1059, 2002.

157.Chan NN, Vallance P, Colhoun HM: Endothelium-dependent and -independent vascular dysfunction in type 1 diabetes: role of conventional risk factors, sex, and glycemic control. Arterioscler Thromb Vasc Biol 23: 1048–1054, 2003.

Соседние файлы в предмете Биохимия