- •Часть I
- •011500 «Геология и геохимия горючих ископаемых»
- •012500 «География»
- •020802 «Природопользование»
- •Содержание
- •Предисловие
- •Лекция № 1 Физические основы механики. Важнейшие этапы истории физики. Физические модели. Введение в курс.
- •Размерность физических величин.
- •Система единиц измерения си:
- •Механика.
- •Вопросы для самоподготовки
- •Лекция № 2 Кинематика поступательного прямолинейного и криволинейного движений.
- •Существует два способа описания движения тела (точки): векторный способ и координатный.
- •Криволинейное движение.
- •Вопросы для самоподготовки
- •Лекция № 3 Динамика поступательного движения. Закон сохранения импульса.
- •Силы в механике
- •Закон сохранения импульса
- •Вопросы для самоподготовки
- •Кинематика вращательного движения.
- •А) Момент силы: Рассмотрим движение тела, имеющее ось вращения о1о2, под действием произвольной силы f.
- •Б) Момент инерции:
- •3.Диск – относительно оси симметрии:
- •5. Прямой тонкий стержень – относительно оси, перпендикулярной стержню и проходящей через его середину:
- •Векторное произведение радиуса-вектора I-той материальной точки на ее импульс называется моментом импульса I-той материальной точки:
- •Законы динамики вращательного движения.
- •Вопросы для самоподготовки
- •Лекция № 5 Энергия и работа. Виды механической энергии. Закон сохранения и превращения механической энергии.
- •I. Понятие энергии, работы, мощности.
- •II. Работа силы при вращательном движении
- •III. Энергия механического движения.
- •Если твердое тело одновременно участвует в двух движениях: поступательном со скоростью и вращательном со скоростью , то
- •IV. Закон сохранения механической энергии.
- •Соударение двух тел
- •Вопросы для самоподготовки
- •Лекция № 6. Классическая и Специальная теория относительности. Взаимосвязь энергии и массы.
- •1.Инерциальные системы. Принцип относительности в классической механике Ньютона.
- •I постулат.
- •2. Специальная теория относительности Эйнштейна.
- •3. Следствия из преобразований Лоренца.
- •1) Длина тел в разных системах отсчета.
- •2) Замедление течения времени.
- •Парадокс близнецов.
- •4. Релятивистский закон сложения скоростей.
- •5. Элементы релятивистской динамики.
- •Вопросы для самоподготовки
- •Лекция № 7
- •Механика жидкостей и газов.
- •Вязкость жидкости. Уравнение Бернулли.
- •Раздел физики, в котором рассматривают законы равновесия и движения жидких и газообразных тел, а также их взаимодействие с твердыми телами, называют гидроаэромеханикой.
- •Вопросы для самоподготовки
- •Лекция № 8 Механика твердых тел. Закон Гука.
- •Диаграмма напряжений.
- •Электрический заряд. Закон Кулона
- •Закон Кулона
- •Напряженность электрического поля. Принцип суперпозиции
- •Силовые линии
- •Вопросы для самоподготовки
- •Потенциальная энергия заряда в электростатическом поле
- •Связь между напряженностью и потенциалом.
- •Циркуляция вектора напряженности.
- •Эквипотенциальные поверхности.
- •Поток вектора напряженности через поверхность. Теорема Остроградского-Гаусса.
- •Вопросы для самоподготовки
- •Лекция № 11 Проводники в электрическом поле. Электроемкость. Конденсаторы и их применение.
- •Проводник во внешнем электрическом поле.
- •Электроемкость
- •Конденсаторы и их применение
- •Энергия и плотность энергии заряженного конденсатора
- •Вопросы для самоподготовки
- •Лекция № 12 Электрическое поле в диэлектриках.
- •Поле внутри диэлектрика. Объемные и поверхностные связанные заряды.
- •Свойства вектора р. Связь σ` и ρ` с вектором р.
- •Сегнетоэлектрики
- •Вопросы для самоподготовки
- •Лекция № 13 Характеристики и законы постоянного тока
- •1. Понятие об электрическом токе
- •2. Сила и плотность тока
- •3. Закон Ома для однородного участка цепи
- •4. Закон Ома и Джоуля-Ленца в дифференциальной форме
- •Электродвижущая сила (эдс) источника. Закон Ома для участка цепи, содержащего эдс
- •Закон Ома для замкнутой цепи
- •Последовательное соединение проводников.
- •Параллельное соединение проводников
- •Вопросы для самоподготовки
- •Лекция 14 Электрический ток в металлах и полупроводниках
- •Электрический ток в полупроводниках
- •1. Собственная и примесная проводимость полупроводников
- •2. Образование p-n-перехода
- •Вопросы для самоподготовки
- •Лекция 15 Электрический ток в электролитах. Законы Фарадея для электролиза. Электрический ток в газах. Виды разряда.
- •1. Электролитическая диссоциация
- •2. Проводимость электролитов
- •3. Законы Фарадея для электролиза.
- •4. Техническое применение электролиза
- •Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •2. Виды разрядов. Применение газовых разрядов
- •Вопросы для самоподготовки
- •Лекция № 16 Магнитное поле в вакууме.
- •Основные характеристики магнитно поля.
- •Закон Био – Савара – Лапласа.
- •Магнитное поле в центре кругового тока
- •Магнитное поле прямого тока
- •Сила Лоренца. Сила Ампера
- •Вопросы для самоподготовки
- •Лекция № 17 Магнитное поле в веществе. Намагниченность. Магнитная проницаемость. Ферромагнетики.
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •Магнитный гистерезис. Точка Кюри
- •2. Самоиндукция и взаимоиндукция
- •3. Энергия и плотность энергии магнитного поля
- •Вопросы для самоподготовки
- •Вопросы к коллоквиуму № 1. Вопросы к коллоквиумам
- •Список литературы
IV. Закон сохранения механической энергии.
В 1748 году М.В. Ломоносов впервые сформулировал закон сохранения и превращения энергии. Спустя сто лет Р. Майер и Г. Гельмгольц дали количественную формулировку этого закона:
В замкнутой системе энергия может переходить из одних видов в другие и передаваться от одного тела к другому, но ее общее количество остается неизменным.
Рассмотрим, как изменяется энергия, в механической системе, находящейся под действием консервативных сил. Положим, в системе из n материальных точек, обладающих массами mi, действуют результирующие консервативные силы Fi и неконсервативные силы fi.
По второму закону Ньютона уравнение движения для i-той точки системы имеет вид:
(7)
Умножим обе части уравнения на dr и учтем, что dr = vdt. Для всей системы материальных точек получим:
(8)
Первая сумма уравнения (8) – изменение кинетической энергии системы материальных точек (dWк).
Вторая – представляет собой суммарную работу, совершаемую всеми консервативными силами и равную изменению потенциальной энергии системы (dA = - dWp).
Третья сумма – работа, совершаемая неконсервативными силами (δАн.к).
Таким образом: dWk + dWp = δAнк (9)
Закон сохранения механической энергии:
Изменение полной энергии механической системы равно работе неконсервативных сил, действующих на нее.
Если на систему действуют консервативные силы (замкнутая система), то уравнение (9) принимает вид:
d(Wк + Wp) = 0 или W = Wk + Wp = const
Для замкнутой механической системы полная энергия есть величина постоянная
Энергия может перераспределяться между телами системы или переходить из WK в Wp и наоборот, но суммарное значение ее остается постоянным. Закон сохранения энергии является фундаментальным законом природы. Он справедлив как для макротел, так и для микротел.
Соударение двух тел
Рассмотрим два примера на применение законов сохранения импульса и энергии при соударении двух тел. Существует два предельных вида удара: абсолютно упругий и абсолютно неупругий.
Абсолютно упругим ударом называется такой удар, в результате которого не происходит превращения механической энергии системы соударяющихся тел в другие виды энергии, а тела разлетаются, не меняя своего строения и формы.
Запишем закон сохранения импульса для абсолютно упругого удара
,
где
-
скорости тел до удара,
- скорости тел после удара.
Закон сохранения энергии для абсолютно упругого удара шаров запишется в следующем виде
В этом случае кинетическая энергия системы до удара равна кинетической энергии системы после удара.
Решая совместно два уравнения, получим скорости шаров после удара.
Систему тел называют диссипативной, если ее механическая энергия постепенно уменьшается за счет превращения в другие формы энергии. Этот процесс называют процессом диссипации (рассеяния) энергии. В качестве примера рассмотрим диссипацию энергии при абсолютно неупругом прямом центральном ударе двух поступательно движущихся тел.
Абсолютно неупругим ударом называется такой удар, после которого тела меняют свою форму и движутся как единое целое с одинаковой скоростью или покоятся. При этом происходит превращение механической энергии в другие виды (например, в тепло).
Запишем закон сохранения импульса для абсолютно неупругого удара
,
где
-
скорости тел до удара,
- общая скорость после удара.
Запишем закон сохранения энергии в общем форме для абсолютно неупругого удара шаров.
,
где
- энергия деформации. В этом случае
изменение полной механической энергии
равно энергии деформации.
