- •Понятие о материи.
- •Погрешности
- •Для иллюстрации работы с функцией типа рассмотрим вычисление объема прямого кругового конуса V на основе прямых измерений его диаметра основания d и высоты h:
- •Определить работу тока за 8 секунд при силе тока 1,5а и напряжении 4в
- •Основная задача механики. Движение материальной точки.
- •Равномерное движение
- •Графическое представление движения.
- •Относительность движения
- •Неравномерное движение. Средняя скорость.
- •РавноПеременное прямолинейное движение. Мгновенная скорость. Ускорение.
- •Перемещение при прямолинейном равнопеременном движении.
- •2 . Определите перемещение тела, график проекции скорости которого, показан на рисунке
- •Движение материальной точки по окружности. Ц ентростремительное ускорение.
- •Период и частота обращения. Угловая скорость. Связь угловой и линейной скоростей.
- •Расчёт фрикционных, ремённых и зубчатых передач.
- •Как изменяются координаты тела со временем при равномерном движении по окружности.
- •Импульс. Закон сохранения импульса. II закон Ньютона. Взаимодействие двух или нескольких тел.
- •Импульс силы равен изменению импульса тела.
- •Р еактивное движение. Уравнение Мещерского. Формула Циолковского.
- •Энергия. Механическая работа и мощность. Энергия
- •Работа является мерой изменения энергии. Работа
- •Теорема о кинетической энергии
- •Векторные поля.
- •Ламинарное течение жидкости
- •Турбулентное течение жидкости. Вихревое поле.
- •Гравитационное поле
- •Строение солнечной системы.
- •Вес тела.
- •Вес тела движущегося с ускорением.
- •Э лектрическое поле
- •0,2 МкКл
- •Магнитное поле
- •Движение тела в однородных полях.
- •Движение тела в однородном гравитационном поле.
- •Движение тела, брошенного вертикально.
- •Движение тела, брошенного горизонтально.
- •Движение тела, брошенного под углом к горизонту.
- •2. Движение в однородном электрическом поле.
- •3. Движение частицы в магнитном поле.
- •С илы трения. Коэффициент трения. Трение в жидкостях и газах. Учёт и использование трения в быту и технике.
- •1. Сила трения
- •2. Сила сопротивления среды.
- •Сила гидростатического сопротивления.
- •2. Сила сопротивления вязкого трения.
- •Пример2. Падение тел в жидкости или газе.
- •Движение тел под действием нескольких сил.
- •2,2 М/с2 Лифт тормозится
- •Работа силы тяжести
- •Работа силы упругости
- •Коэффициент полезного действия
- •Потенциал. Работа и разность потенциалов. Эквипотенциальные поверхности.
- •1. Потенциальная энергия тяготения. Потенциал.
- •2. Работа и разность потенциалов
- •3. Потенциальная энергия электростатического взаимодействия. Потенциал электростатического поля.
- •4. Эквипотенциальные поверхности
- •Ёмкость. Теплоёмкость. Электроёмкость. Конденсаторы.
- •Соединение электрических конденсаторов.
- •Уравнения движения точки, равномерно движущейся по окружности. Колебательное движение.
- •Колебания
- •Характеристики колебательного движения:
- •Графики смещения, скорости и ускорения
- •Вынужденные гармонические колебания.
- •С ложение колебаний
- •Свободные гармонические колебания.
- •А втоколебания
- •Условия равновесия твёрдого тела. Виды равновесия. Принцип минимума потенциальной энергии. Момент силы. Условия равновесия тела, имеющего ось вращения.
- •Равновесие тела при наличии оси вращения.
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •I вариант
- •II вариант
- •Календарно-тематическое планирование
Погрешности
Выполнение лабораторных работ связано с измерением различных физических величин.
Измерение – нахождение значения физической величины опытным путём с помощью средств измерений.
Прямое измерение – определение значения физической величины непосредственно средствами измерения.
Косвенные измерения – определение значения физической величины по формуле, связывающей её с другими величинами, определяемыми прямыми измерениями.
При измерениях всегда появляются неточности (погрешности).
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Чем точнее прибор, тем меньше погрешность. Для оценки качества измерений вводят понятия относительной и абсолютной погрешностей. Абсолютная погрешность равна Δα=|αо-α|, где αо- истинное значение величины (табличное или измеренное более точным прибором), α – приближённое значение этой величины, полученное при измерении. Относительная погрешность вычисляется по формуле
и
выражается в процентах.
Погрешности, возникаемые при измерениях делятся на систематические и случайные.
Систематические погрешности - это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.
Причины возникновения систематических погрешностей:
1) несоответствие средств измерения эталону;
2) неправильная установка измерительных приборов (наклон, неуравновешенность);
3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;
4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).
Случайные погрешности - это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.
Если систематические погрешности малы, то учитываются случайные погрешности и погрешности прибора.
Введём следующие обозначения:
А, В, С, - физические величины.
– среднестатистическое
значение искомой величины
∆аi
– случайная погрешность отдельного
измерения
– среднее
значение случайной погрешности,
При оценке погрешности измерения необходимо учитывать не только случайную погрешность, но и погрешность прибора.
Пример: Максимальное напряжение, которое можно измерить вольт-
метром по выбранной шкале, равно 500 В, класс точности K = 0.5. Для
определения приборной погрешности следует вычислить
Если же неизвестен класс точности прибора и нет других сведений о прибор-
ной
погрешности, то ∆иА
считают
равной цене наименьшего деления шкалы
(Фадеев М.А. 2002г. Элементарная обработка
результатов измерения.). Общую
абсолютную погрешность результата
находят по формуле:
Относительная
погрешность
или
Результат представляется следующим образом:
Эти выкладки справедливы для прямых измерений.
Для косвенных измерений
No |
Формула для физической величины |
Формула для относительной погрешности |
1 |
А=ВСD |
|
2 |
|
|
3 |
A=B±C |
|
4 |
|
|
Результаты измерений записываются следующим образом: ; ɛ = ….%
