
- •Федеральное агентство образованИя
- •Кинематика основные понятия и задачи кинематики
- •Кинематика точки Способы задания движения точки
- •Векторный способ.
- •Координатный способ.
- •Естественный способ.
- •Скорость точки
- •Скорость точки при векторном задании движения.
- •Скорость точки при координатном задании движения.
- •Скорость точки при естественном задании движения.
- •Классификация движений точки по ускорению
- •Простейшие движения твердого тела Поступательное движение тела
- •Вращательное движение тела
- •Сферическое движение твердого тела Определение сферического движения.
- •Теорема Эйлера-Даламбера о конечном повороте
- •Угловая скорость,угловое ускорение
- •Скорость точки тела, участвующего в сферическом движении
- •Мгновенная ось вращения
- •Ускорение точки тела
- •Составное движение точки
- •Дифференцирование вектора в подвижных координатах (Формула Бура)
- •Теорема сложения скоростей
- •Сложение ускорений в составном движении
- •Плоскопараллельное движение твердого тела
- •Разложение движения плоской фигуры на поступательное и вращательное
- •Теорема о скоростях плоской фигуры
- •Мгновенный центр скоростей
- •Примеры определения мцс.
- •Теорема об ускорениях точек плоской фигуры
- •Мгновенный центр ускорений
- •Примеры нахождения мцу.
- •Статика введение в статику Основные понятия статики, область их применения
- •Аксиомы статики Аксиома о равновесии системы двух сил.
- •Аксиома о добавлении (отбрасывании) системы сил эквивалентной нулю.
- •Аксиома параллелограмма сил
- •Аксиома о равенстве сил действия и противодействия.
- •Аксиома затвердевания.
- •Аксиома связей
- •Система сходящихся сил Сложение и разложение сил. Проекция силы на ось и на плоскость.
- •Сходящаяся система сил. Условия равновесия систем сходящихся сил.
- •Теория моментов. Теория пар сил. Момент силы относительно точки на плоскости
- •Векторное представление момента силы
- •Момент силы относительно оси
- •Пара сил. Момент пары
- •Свойства пар сил. Сложение пар сил.
- •Произвольная пространственная система сил Лемма о параллельном переносе силы
- •Основная теорема статики
- •Сравнение понятий главного вектора и равнодействующей.
- •Зависимость между главными моментами, вычисленными относительно различных центров приведения
- •Инварианты системы сил
- •Частные случаи приведения системы сил к центру
- •Условия равновесия произвольной системы сил
- •Различные типы систем сил и условия их равновесия:
- •Теорема о моменте равнодействующей (теорема Вариньона)
- •Применение условий равновесия Различные формы условий равновесия
- •Статически определимые и статически неопределимые задачи
- •Методика решения задач на равновесие пространственной системы сил
- •Распределённые силы
- •Частные случаи распределенных нагрузок.
- •Силы трения Трение скольжения
- •Угол и конус трения
- •Трение качения
- •Центр параллельных сил
- •Центр тяжести объёма, площади, линии
- •Динамика
- •Динамика материальной точки
- •Динамика свободной материальной точки
- •Законы механики Галилея-Ньютона
- •1. Закон инерции
- •2. Основной закон динамики точки
- •3. Закон о равенстве сил действия и противодействия.
- •4. Принцип суперпозиции (закон независимого действия сил)
- •Дифференциальные уравнения движения материальной точки
- •Классификация задач динамики.
- •Первая основная задача динамики
- •Вторая основная задача динамики.
- •Динамика несвободной материальной точки
- •Динамика относительного движения точки
- •Принцип относительности Галилея. Относительный покой.
- •Сила веса и сила тяжести.
- •Основы динамики механических систем Основные понятия и определения Cвязи и их классификация
- •Возможные (виртуальные) перемещения
- •Обобщенные координаты. Число степеней свободы системы
- •Центр масс
- •Моменты инерции твердых тел
- •Количество движения
- •Кинетический момент
- •Кинетическая энергия
- •Элементарный и полный импульс силы
- •Работа силы
- •Силовое поле, силовая функция, потенциальная энергия.
- •Силы инерции. Главный вектор и главный момент сил инерции механической системы
- •Обобщенные силы
- •Введение в динамику механической системы
- •Дифференциальные уравнения движения механической системы
- •Общие теоремы динамики
- •Теорема о движении центра масс
- •Теорема об изменении количества движения
- •Теорема об изменении главного вектора кинетического момента
- •Теорема о кинетическом моменте в относительном движении по отношению к центру масс
- •Теорема об изменении кинетической энергии
- •Закон сохранения механической энергии для точки и системы
- •Принцип Даламбера
- •Принцип Лагранжа (принцип возможных перемещений)
- •Общее уравнение динамики
- •Уравнения ЛагранжаIIрода
- •Динамика твердого тела
- •Поступательное движение
- •Вращательное движение вокруг неподвижной оси
- •Частные случаи:
- •Нахождение реакций в подшипниках
- •Плоское движение
- •Сферическое движение твердого тела
- •Условия интегрируемости уравнений движения
- •Основы теории колебаний
- •Основные понятия и определения
- •Потенциальная энергия системы
- •Кинетическая энергия системы
- •Диссипативная функция Рэлея
- •Уравнение ЛагранжаIIрода
- •Свободные колебания системы
- •Ошибка! Закладка не определена.
- •Затухающие колебания системы
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Вынужденные колебания системы
- •Ошибка! Закладка не определена.Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Исследование вынужденных колебаний
- •Резонанс
- •Ошибка! Закладка не определена.
- •Биения.
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Критерии и условия, используемые при исследовании колебательных движений механических систем
- •Коэффициент динамичности.
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Коэффициент передачи силы
- •Список литературы Основной
- •Дополнительный
Ускорение точки тела
Ускорение произвольной точки тела может быть определено по формуле Ривальса:
где
— вращательное ускорение, направленное
перпендикулярно к векторам
и
(рис.1.7);
—
угловое ускорение тела, совершающего
сферическое движение. Вектор углового
ускорения направлен вдоль мгновенной
оси ускорений, которая определяется
из условия равенства нулю вращательного
ускорения произвольной точки оси
ускорений;
—
осестремительное ускорение,
перпендикулярное векторам
и
(рис.1.7).
Составное движение точки
Механические явления по–разному фиксируются в различных системах отсчёта. Наблюдатели, связанные с разными системами координат, по–разному воспринимают одно и то же объективное механическое явление. Главной задачей кинематики составного движения является установление связи между кинематическими характеристиками, полученными в различных системах отсчёта. Одна из этих систем условно называется неподвижной системой. Вторая — подвижной системой отсчета (рис.1.8).
Движение относительно условно неподвижной
системы координат
называется абсолютным. Движение точки
относительно системы координат
,
движущейся, в свою очередь, относительно
условно неподвижной (рис.1.8), называется
относительным. Переносным движением
называется движение подвижной системы
.
Переносным движением точки М называется
движение точки
,
принадлежащей подвижной системе
координат и совпадающей в данный момент
времени с точкой
.
Различаются абсолютные, относительные,
переносные траектории, скорости и
ускорения точки
.
Рис. 1. 8. Составное движение точки
Абсолютной или относительной траекторией, скоростью и ускорением называется траектория, скорость и ускорение в абсолютном или относительном движении.
Переносной траекторией точки называют элементарный отрезок траектории точки подвижной системы координат, с которой в данный момент совпадает исследуемая точка. Переносной скоростью и ускорением точки называется скорость и ускорение той точки подвижной системы координат, с которой в данный момент времени совпадает исследуемая точка.
Относительные скорость и ускорение
будем обозначать
и
.
Индекс "r" — начальная буква
французского слова relative (относительный).
Переносные скорость и ускорение будем
обозначать
и
.
Индекс "е" — от французского слова
d'entainement (переносный).
Дифференцирование вектора в подвижных координатах (Формула Бура)
Пусть вектор
представлен в подвижной системы
координат в виде (рис.1.8):
.
Возьмём производную вектора
по времени, учитывая, что орты подвижной
системы координат изменяются по
направлению:
.
Первые три слагаемые этой формулы дают нам относительную производную, обозначаемую как:
.
Производная от единичного вектора — т. е. скорость конца этого вектора равна
.
Учитывая данное равенство, последние три слагаемых можно преобразовать следующим образом
.
Окончательно производная вектора
по
будет записываться соотношением:
,
где:—
относительная (локальная) производная,
в которой дифференцируются только
координаты;
—
вектор угловой скорости подвижной
системы координат.
Данная формула называется формулой Бура.