- •Введение
- •Элементы линейной алгебры
- •Решение системы линейных уравнений с двумя неизвестными методом Крамера
- •Дадим ряд определений.
- •Геометрический смысл решения системы линейных уравнений с двумя неизвестными
- •При этом возможны 3 случая:
- •Матрицы и определители второго порядка
- •Основные свойства определителей
- •1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
- •Геометрический смысл решения системы уравнений с тремя неизвестными
- •Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
- •1.3. Решение системы линейных уравнений с помощью матриц
- •Решение:
- •Метод Гаусса
- •Метод Жордано-Гаусса
- •Основные действия с матрицами
- •Матричный метод решения системы линейных уравнений с использованием обратной матрицы
- •2. Элементы Векторной алгебры
- •2.1. Векторные и скалярные величиы
- •2.2. Геометрические методы линейных операций над векторами
- •Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число (скаляр )
- •2.3. Координатная форма векторов
- •2.4. Линейные операции над векторами в координатной форме
- •2 .5. Определение длины и направления векторов
- •2.6. Скалярное произведение векторов
- •2.7. Векторное произведение векторов
- •Свойства векторного произведения
- •Векторное произведение в координатной форме
- •Элементы аналитической геометрии
- •3.1. Прямая линия на плоскости
- •3.1.1. Общее уравнение прямой и уравнение прямой с угловым коэффициентом
- •3 .1.2. Уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом
- •3.1.3. Уравнение прямой, проходящей через две заданные точки
- •3 .1.4. Угол между двумя прямыми
- •3.1.5. Условия параллельности и перпендикулярности прямых
- •3.1.6. Определение длины отрезка прямой и координат его середины
- •3.2. Линии второго порядка
- •3.2.1. Окружность
- •3.2.2. Эллипс
- •3.2.3. Гипербола
- •3.2.4. Парабола
- •4. Введение в математический анализ
- •4.1. Понятие функции и аргумента Математический анализ изучает переменные величины и функциональные зависимости между ними.
- •4.2 Пределы функции в точке и на бесконечности
- •Замечательные пределы и их следствия
- •Бесконечно малые и бесконечно большие функции
- •Вычисление пределов
- •4.3. Непрерывность функции и точки разрыва
- •4.4. Производная функции
- •Геометрический и физический смысл производной
- •4.5. Дифференцирование функций
- •Дифференциал функции
- •Основные правила дифференцирования
- •4.6. Производные высших порядков
- •4.7. Исследование функций с помощью производных
- •4.7.1. Основные теоремы дифференциального исчисления
- •4.7.2.Признак монотонности функций
- •Необходимый и достаточный признак монотонности функции
- •4.7.3. Локальные экстремумы функций
- •Необходимый признак существования локального экстремума функции
- •Достаточный признак существования локального экстремума функции
- •4.7.4. Выпуклость, вогнутость графика функции и точки перегиба
- •НеобходимыЙ и достаточныЙ признак выпуклости и вогнутости
- •Необходимый признак существования точек перегиба
- •Достаточный признак существования точек перегиба
- •4.7.5. Асимптоты графиков функций
- •4.7.6. Общая схема исследования функций и построения графиков
- •Пример выполнения контрольной работы по темам 1-4
- •Контрольная работа
- •Решение:
- •Контрольные вопросы по темам 1-4, выносимые на экзамен
- •5. Функция двух переменных
- •5.1. Предел и Непрерывность функции двух переменных
- •5.2. Частные производные функции двух переменных
- •5.3. Полный и часные дифференциаЛы функции двух переменных
- •5.4. Частные производные высших порядков
- •5.5. Экстремум функции двух переменных
- •Достаточное условие экстремума
- •Отыскание наибольшего и наименьшего значения в замкнутой области
- •6. Неопределенный интеграл
- •6.1. Первообразная функция и ее свойства
- •Основные свойства первообразной
- •6.2. Неопределенный интеграл
- •Основные Свойства неопределенного интеграла
- •6.3. Основные методы интегрирования
- •6.3.1. Метод непосредственного интегрирования
- •6.3.2. Метод подстановки или замены переменной
- •6.3.3. Метод интегрирования по частям
- •6.3.4. Интегрирование рациональных дробей
- •Интегрирование выражений с квадратным трехчленом
- •6.3.5. Интегрирование иррациональных выражений
- •7. Определенный интеграл
- •7.1. Задачи, приводящие к понятию определенного интеграла
- •7.2. Определенный интеграл
- •Геометрический и физический смысл определенного интеграла
- •7.3. Основные свойства определенного интеграла
- •Необходимое и достаточное условия интегрируемости функций
- •7.4. Определенный интеграл с пеРеМенным верхним пределом. Связь между неопределенным и определеннЫм интеграЛами
- •Вывод формулы ньютона-лейбница
- •7.5. Основные методы вычисления определенного интеграла
- •Метод подстановки или замены переменной
- •Метод интегрирования по частям
- •ИнТинтЕгрирование четных и нечетных функцийна симметричном отрезке
- •7.6. Приложение определенного интеграла к решению геометрических и физических задач.
- •7.6.1. Расчет площади криволинейных фигур
- •7.6.2. Длина дуги кривой
- •7.6.3. Вычисление работы, выполненной действием переменной силы
- •8. Несобственные интегралы
- •8.1. Несобственные интегралы первого рода с бесконечными пределами интегрирования
- •Теоремы сходимости Для знакоположительных функций
- •Теорема абсолютной сходимости Для знакопеременной функции
- •8.2. Несобственные интегралы второго рода от функций с бесконечными разрывами.
- •9. Дифференциальные уравнения
- •9.1. Дифференциальные уравнения первого порядка
- •ГеометричесКий смысл решения дифференциальных уравнений первого порядка
- •9.1.1. Задача и теорема коши о существовании и единственности решения дифференциального уравнения первого порядка
- •9.1.2. Основные виды дифференциального уравнения первого порядка дифференциальНые Уравнения первого порядка с разделяющимися переменными
- •ДифференциальНые Однородные уравнения первого порядка
- •Линейные дифференциальНые уравнения первого порядка
- •9.2. Дифференциальные уравнения второго порядка
- •9.2.1. ГеометричесКий смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка
- •9.2.2. Дифференциальные уравнения второГо порядка, допускающие понижение порядка
- •9.2.3. Линейные дифференциальные уравнения второго порядка
- •ЛинейныЕ однородныЕ дифференциальныЕ уравнениЯ (лоду) второго порядка с постоянными коэффициентами
- •ЛинейныЕ нЕоднородныЕ дифференциальныЕ уравнениЯ (лнду) второго порядка с постоянными коэффициентами
- •Контрольные вопросы по темам 5-9, выносимые на экзамен
- •Литература
2. Элементы Векторной алгебры
2.1. Векторные и скалярные величиы
Величины бывают скалярные и векторные.
Скалярные величины задаются только их численным значением. К скалярным величинам относят такие величины как: температура, работа, длина, площадь, объем и т. д. Скаляр – это число.
Векторные величины характеризуются как численным значением (длиной), так и направлением в пространстве. К векторным величинам относят: силу, скорость, ускорение и т.д.
Дадим ряд определений.
Определение: Вектором называется направленный отрезок в пространстве, имеющий начало и конец.
Вектор
обозначается
=
,
где А – начало или точка приложения
вектора, В - конец вектора. Вектор
показывается отрезком со стрелкой на
конце:
B
A
Вектор характеризуется длиной и направлением в пространстве.
Определение:
Длина
вектора называется модулем вектора
и обозначается:
.
Определение:
Векторы
и
называются
коллинеарными (
),
если они лежат на одной или параллельных
прямых.
О
пределение:
Векторы
и
называются равными (
=
),
если выполняются три условия:
они коллинеарны;
имеют равные модули; =
сонаправлены.
Определение:
Векторы
и
называются противоположными, если
выполняются три условия:
о
ни
коллинеарны ;имеют равные модули;
противоположно направлены.
Определение: Векторы называются свободными, если их можно перемещать в пространстве параллельно самим себе.
Далее рассматриваем свободные векторы.
Определение: Векторы называются компланарными, если они лежат в одной или параллельных плоскостях. Компланарные векторы всегда можно свести в одну плоскость.
Определение: Векторы называются ортогональными, если они взаимно перпендикулярны друг другу.
2.2. Геометрические методы линейных операций над векторами
К линейным операциям над векторами относятся: сложение, вычитание векторов и умножение их на число (на скаляр). Линейные операции над векторами могут выполняться геометрическими методами и аналитическим способом с помощью координат векторов.
Рассмотрим геометрические методы.
Сложение векторов
Определение:
Суммой двух векторов
и
называется
вектор
,
идущий из начала первого
в конец второго
,
при условии, что второй вектор приложен
к концу первого.
Метод сложения векторов, данный в определении называется методом треугольника.
Сложения
векторов можно выполнять также методом
параллелограмма, в котором слагаемые
векторы прикладывают в одну точку. По
этим векторам, как по сторонам строят
параллелограмм и их суммой является
вектор, идущий по диагонали из общей
точки в противоположную вершину.
При
сложении нескольких векторов используется
метод многоугольника, который заключается
в последовательном применении метода
треугольника и сумма векторов представляет
собой вектор, идущий из начала первого
в конец последнего, когда каждый следующий
вектор прикладывается к концу предыдущего.
Например, сумма
представляет
собой вектор, идущий из начала
в конец
вектора
.
Свойства суммы векторов:
Переместительное свойство:
;Сочетательное свойство:
.
