Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика УЧЕБНИК.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
3.51 Mб
Скачать

1.3. Решение системы линейных уравнений с помощью матриц

Рассмотрим систему линейных уравнений с многими переменными:

, (5)

где aij- коэффициенты при неизвестных хi; bi-свободные члены;

индексы: i = 1,2,3…m- определяют номер уравнения и j = 1,2,3...n- номер неизвестного.

Определение: Решением системы уравнений (5) называется совокупность n чисел (х10, х20,….хn0), при подстановке которых в систему все уравнения обращаются в верные числовые тождества.

Определение: Система уравнений называется совместной, если она имеет хотя бы одно решение. Совместная система называется определенной, если она имеет единственное решение (х10, х20,….хn0), и неопределенной, если таких решений несколько.

Определение: Система называется несовместной, если она не имеет решения.

Определение: Таблицы, составленные из числовых коэффициентов (aij) и свободных членов (bi) системы уравнений (5), называются матрицей системы (А) и расширенной матрицей (А1), которые обозначаются в виде:

А= и А1= .

Определение: Матрица системы А, имеющая неравное число строк и столбцов (nm), называется прямоугольной. Если число строк и столбцов совпадает (n=m), то матрица называется квадратной.

Если в системе число неизвестных равно числу уравнений (n=m), то система имеет квадратную матрицу n-го порядка.

Выделим в матрице А k-произвольных строк и k-произвольных столбцов (km, kn).

Определение: Определитель k-порядка, составленный из элементов матрицы А, расположенных на пересечении выделенных строк и столбцов, называется минором k-порядка матрицы А.

Рассмотрим всевозможные миноры матрицы А. Если все миноры (k+1)-порядка равны нулю, а хотя бы один из миноров k-порядка не равен нулю, то говорят, что матрица имеет ранг равный k.

Определение: Рангом матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля. Ранг матрицы обозначается через r(A).

Определение: Всякий отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным.

Определение: Если для двух матриц А и В их ранги совпадают r(A)= r(В), то эти матрицы называются эквивалентными и обозначаются А  В.

Ранг матрицы не изменится от элементарных, эквивалентных преобразований, которые включают:

  1. Замену строк столбцами, а столбцов - соответствующими строками;

  2. Перестановку строк или столбцов местами;

  3. Вычеркивание строк или столбцов, все элементы которых равны нулю;

  4. Умножение или деление строки или столбца на число, отличное от нуля;

  5. Прибавление или вычитание элементов одной строки или столбца из другой, умноженной на любое число.

При определении ранга матрицы используют эквивалентные преобразования, с помощью которых исходную матрицу приводят к ступенчатой (треугольной) матрице.

В ступенчатой матрице под главной диагональю располагаются нулевые элементы, причем первый ненулевой элемент каждой её строки, начиная со второй, расположен правее первого неравного нулю элемента предыдущей строки.

Отметим, что ранг матрицы равен числу ненулевых строк ступенчатой матрицы.

Например, матрица А= - ступенчатого вида и её ранг равен числу ненулевых строк матрицы r(A)=3. Действительно, все миноры 4-го порядка с нулевыми элементами 4-ой строки равны нулю, а миноры 3-го порядка отличны от нуля. Для проверки вычислим определитель минора первых 3-х строк и3-х столбцов:

М=

Любую матрицу можно привести к ступенчатой путем обнуления элементов матрицы под главной диагональю с помощью элементарных действий.

Вернемся к исследованию и решению системы линейных уравнений (5).

Важную роль в исследовании систем линейных уравнений играет Теорема Кронекера-Капели. Сформулируем эту теорему.

Теорема Кронекера-Капели: Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы А1, т.е. r(A)=r(A1). В случае совместности система является определенной, если ранг матрицы системы равен числу неизвестных, т.е. r(A)=r(A1)=n и неопределенной, если этот ранг меньше числа неизвестных, т.е. r(A)= r(A1)<n.

Пример. Исследовать систему линейных уравнений:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]