- •Введение
- •Элементы линейной алгебры
- •Решение системы линейных уравнений с двумя неизвестными методом Крамера
- •Дадим ряд определений.
- •Геометрический смысл решения системы линейных уравнений с двумя неизвестными
- •При этом возможны 3 случая:
- •Матрицы и определители второго порядка
- •Основные свойства определителей
- •1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
- •Геометрический смысл решения системы уравнений с тремя неизвестными
- •Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
- •1.3. Решение системы линейных уравнений с помощью матриц
- •Решение:
- •Метод Гаусса
- •Метод Жордано-Гаусса
- •Основные действия с матрицами
- •Матричный метод решения системы линейных уравнений с использованием обратной матрицы
- •2. Элементы Векторной алгебры
- •2.1. Векторные и скалярные величиы
- •2.2. Геометрические методы линейных операций над векторами
- •Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число (скаляр )
- •2.3. Координатная форма векторов
- •2.4. Линейные операции над векторами в координатной форме
- •2 .5. Определение длины и направления векторов
- •2.6. Скалярное произведение векторов
- •2.7. Векторное произведение векторов
- •Свойства векторного произведения
- •Векторное произведение в координатной форме
- •Элементы аналитической геометрии
- •3.1. Прямая линия на плоскости
- •3.1.1. Общее уравнение прямой и уравнение прямой с угловым коэффициентом
- •3 .1.2. Уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом
- •3.1.3. Уравнение прямой, проходящей через две заданные точки
- •3 .1.4. Угол между двумя прямыми
- •3.1.5. Условия параллельности и перпендикулярности прямых
- •3.1.6. Определение длины отрезка прямой и координат его середины
- •3.2. Линии второго порядка
- •3.2.1. Окружность
- •3.2.2. Эллипс
- •3.2.3. Гипербола
- •3.2.4. Парабола
- •4. Введение в математический анализ
- •4.1. Понятие функции и аргумента Математический анализ изучает переменные величины и функциональные зависимости между ними.
- •4.2 Пределы функции в точке и на бесконечности
- •Замечательные пределы и их следствия
- •Бесконечно малые и бесконечно большие функции
- •Вычисление пределов
- •4.3. Непрерывность функции и точки разрыва
- •4.4. Производная функции
- •Геометрический и физический смысл производной
- •4.5. Дифференцирование функций
- •Дифференциал функции
- •Основные правила дифференцирования
- •4.6. Производные высших порядков
- •4.7. Исследование функций с помощью производных
- •4.7.1. Основные теоремы дифференциального исчисления
- •4.7.2.Признак монотонности функций
- •Необходимый и достаточный признак монотонности функции
- •4.7.3. Локальные экстремумы функций
- •Необходимый признак существования локального экстремума функции
- •Достаточный признак существования локального экстремума функции
- •4.7.4. Выпуклость, вогнутость графика функции и точки перегиба
- •НеобходимыЙ и достаточныЙ признак выпуклости и вогнутости
- •Необходимый признак существования точек перегиба
- •Достаточный признак существования точек перегиба
- •4.7.5. Асимптоты графиков функций
- •4.7.6. Общая схема исследования функций и построения графиков
- •Пример выполнения контрольной работы по темам 1-4
- •Контрольная работа
- •Решение:
- •Контрольные вопросы по темам 1-4, выносимые на экзамен
- •5. Функция двух переменных
- •5.1. Предел и Непрерывность функции двух переменных
- •5.2. Частные производные функции двух переменных
- •5.3. Полный и часные дифференциаЛы функции двух переменных
- •5.4. Частные производные высших порядков
- •5.5. Экстремум функции двух переменных
- •Достаточное условие экстремума
- •Отыскание наибольшего и наименьшего значения в замкнутой области
- •6. Неопределенный интеграл
- •6.1. Первообразная функция и ее свойства
- •Основные свойства первообразной
- •6.2. Неопределенный интеграл
- •Основные Свойства неопределенного интеграла
- •6.3. Основные методы интегрирования
- •6.3.1. Метод непосредственного интегрирования
- •6.3.2. Метод подстановки или замены переменной
- •6.3.3. Метод интегрирования по частям
- •6.3.4. Интегрирование рациональных дробей
- •Интегрирование выражений с квадратным трехчленом
- •6.3.5. Интегрирование иррациональных выражений
- •7. Определенный интеграл
- •7.1. Задачи, приводящие к понятию определенного интеграла
- •7.2. Определенный интеграл
- •Геометрический и физический смысл определенного интеграла
- •7.3. Основные свойства определенного интеграла
- •Необходимое и достаточное условия интегрируемости функций
- •7.4. Определенный интеграл с пеРеМенным верхним пределом. Связь между неопределенным и определеннЫм интеграЛами
- •Вывод формулы ньютона-лейбница
- •7.5. Основные методы вычисления определенного интеграла
- •Метод подстановки или замены переменной
- •Метод интегрирования по частям
- •ИнТинтЕгрирование четных и нечетных функцийна симметричном отрезке
- •7.6. Приложение определенного интеграла к решению геометрических и физических задач.
- •7.6.1. Расчет площади криволинейных фигур
- •7.6.2. Длина дуги кривой
- •7.6.3. Вычисление работы, выполненной действием переменной силы
- •8. Несобственные интегралы
- •8.1. Несобственные интегралы первого рода с бесконечными пределами интегрирования
- •Теоремы сходимости Для знакоположительных функций
- •Теорема абсолютной сходимости Для знакопеременной функции
- •8.2. Несобственные интегралы второго рода от функций с бесконечными разрывами.
- •9. Дифференциальные уравнения
- •9.1. Дифференциальные уравнения первого порядка
- •ГеометричесКий смысл решения дифференциальных уравнений первого порядка
- •9.1.1. Задача и теорема коши о существовании и единственности решения дифференциального уравнения первого порядка
- •9.1.2. Основные виды дифференциального уравнения первого порядка дифференциальНые Уравнения первого порядка с разделяющимися переменными
- •ДифференциальНые Однородные уравнения первого порядка
- •Линейные дифференциальНые уравнения первого порядка
- •9.2. Дифференциальные уравнения второго порядка
- •9.2.1. ГеометричесКий смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка
- •9.2.2. Дифференциальные уравнения второГо порядка, допускающие понижение порядка
- •9.2.3. Линейные дифференциальные уравнения второго порядка
- •ЛинейныЕ однородныЕ дифференциальныЕ уравнениЯ (лоду) второго порядка с постоянными коэффициентами
- •ЛинейныЕ нЕоднородныЕ дифференциальныЕ уравнениЯ (лнду) второго порядка с постоянными коэффициентами
- •Контрольные вопросы по темам 5-9, выносимые на экзамен
- •Литература
1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
Система трех линейных уравнений с тремя неизвестными имеет вид:
(3),
где aij- коэффициенты при неизвестных х, у и z, индексы: i = 1,2,3 - определяют номер уравнения и j = 1,2,3 - номер неизвестного.
Определение: Решением системы уравнений (3) называется тройка чисел (х0,у0,z0), при подстановке которой в эту систему все уравнения обращаются в верные числовые тождества.
Геометрический смысл решения системы уравнений с тремя неизвестными
Геометрически система уравнений (3) задает 3 плоскости в пространстве.
При этом возможны 3 случая:
1) плоскости пересекаются в единой точке с координатами (x0,y0,z0), система в этом случае имеет единственное решение - она совместна и определена;
2) плоскости совпадают друг с другом - система имеет бесконечное множество решений, т.е. она совместна, но не определена;
3) плоскости параллельны друг другу и общих точек пересечения не имеют - система несовместна и решений не имеет.
Данную систему (3) можно решить методом Крамера с помощью определителей третьего порядка.
Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
Определение: Квадратной матрицей 3 -го порядка называется таблица чисел, которая состоит из 3-х строк и 3-х столбцов и обозначается:
А
=
,
где аi,j - называются элементами матрицы, индексы: i = 1, 2, 3 - определяет номер; строки, j = 1, 2, 3 - номер столбца. Элементы а11а22а33 образуют главную диагональ матрицы, а элементы а13а22а31 образуют побочную диагональ матрицы.
Каждая матрица характеризуется своим определителем.
Определение: Определителем матрицы 3-го порядка называется число, которое вычисляется методом диагоналей – как разность суммы произведений элементов главных диагоналей и суммы произведений элементов побочных диагоналей.
Определитель 3-го порядка обозначается и вычисляется по следующей схеме:
Существует
другой, универсальный способ вычисления
определителей 3-го порядка, который
называется методом разложения и
реализуется по следующей схеме:
Данная формула называется формулой разложения по элементам 1-ой строки. Эта формула позволяет вычисление определителя 3-го порядка свести к вычислению определителей 2-го порядка.
Для раскрытия сущности этой формулы введем два понятия - минора и алгебраического дополнения.
Определение: Минором Мij элемента aij определителя 3-го порядка называется определитель 2-го порядка, полученный путем вычеркивания i - строки и j - столбца, на пересечении которых стоит данный элемент.
Так,
для a11
соответствует минор M11
=
,
для a12
- минор M12=
,
а для а13-
минор M13
=
.
Определение: Алгебраическим дополнением Аij элемента aij называется его минор Мij, взятый со знаком +, если сумма номеров строки и столбца, в которых стоит элемент, четная и со знаком - , если эта сумма нечетная, т.е.: Aij = (-1)i+j Mij.
Например: A11 = (-1)1+1 M11 = M11; A12 = (-1)1+2 M12 = -M12; A13 = (-1)1+3 M13 = M13.
Схема
чередования знаков миноров для
соответствующих элементов матрицы:
.
Исходя
из этих понятий, формулу разложения по
элементам 1-ой строки при вычислении
определителя 3-го порядка можно записать
так:
.
Определитель может быть разложен по любой строке или столбцу и равен сумме произведений элементов любой строки или столбца на их алгебраические дополнения. Этот способ вычисления определителей называется методом разложения. Он универсален и применим для определителей любого порядка.
Перейдем к решению системы линейных уравнений с тремя неизвестными методом Крамера.
Систему:
(3) путем
последовательного исключения неизвестных
х, у и
z
можно привести к равносильной
(эквивалентной) системе (4),
имеющей одинаковые решения с исходной
системой (3):
(4),
где
- определитель системы,
,
,
- определители неизвестных x, y, z, которые
получаются из определителя системы
путем замены столбца коэффициентов при
неизвестном на столбец свободных членов.
При решении системы (4) возможны 3 случая при выполнении следующих условий:
Если определитель
системы
,
то, поделив обе части уравнений системы
на
,
найдем неизвестные по формулам Крамера:
При первом условии система имеет единственное решение, она совместна и определена. Три плоскости пересекаются в одной точке с координатами (х0, у0, z0).
Если определитель системы
и все определители неизвестных
,
то имеем
и при любых значениях x, y и z имеем верное
тождество.
При втором условии система имеет бесконечное множество решений, она совместна, но не определена. Плоскости совпадают друг с другом.
Если определитель системы , а определители неизвестных могут быть
или
или
,
то имеем:
,
что невозможно при любых значениях х
и у.
При третьем условии система решения не имеет, она не совместна. Плоскости параллельны друг другу и общих точек не имеют.
Метод решения системы линейных уравнений с помощью определителей называется методом Крамера.
Пример. Решить систему линейных уравнений методом Крамера:
Решение:
1) Вычислим определители системы и неизвестных D, Dх, Dу и Dz.
а) методом разложения по 1-ой строке:
б) методом диагоналей:
2) Найдем решение системы по формулам Крамера:
х0
;
у0
=
z0
=
Проверка:
(верно).
Ответ: (х0=0, у0= -1, z0=2)-точка пересечения плоскостей.
