- •Введение
- •Элементы линейной алгебры
- •Решение системы линейных уравнений с двумя неизвестными методом Крамера
- •Дадим ряд определений.
- •Геометрический смысл решения системы линейных уравнений с двумя неизвестными
- •При этом возможны 3 случая:
- •Матрицы и определители второго порядка
- •Основные свойства определителей
- •1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
- •Геометрический смысл решения системы уравнений с тремя неизвестными
- •Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
- •1.3. Решение системы линейных уравнений с помощью матриц
- •Решение:
- •Метод Гаусса
- •Метод Жордано-Гаусса
- •Основные действия с матрицами
- •Матричный метод решения системы линейных уравнений с использованием обратной матрицы
- •2. Элементы Векторной алгебры
- •2.1. Векторные и скалярные величиы
- •2.2. Геометрические методы линейных операций над векторами
- •Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число (скаляр )
- •2.3. Координатная форма векторов
- •2.4. Линейные операции над векторами в координатной форме
- •2 .5. Определение длины и направления векторов
- •2.6. Скалярное произведение векторов
- •2.7. Векторное произведение векторов
- •Свойства векторного произведения
- •Векторное произведение в координатной форме
- •Элементы аналитической геометрии
- •3.1. Прямая линия на плоскости
- •3.1.1. Общее уравнение прямой и уравнение прямой с угловым коэффициентом
- •3 .1.2. Уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом
- •3.1.3. Уравнение прямой, проходящей через две заданные точки
- •3 .1.4. Угол между двумя прямыми
- •3.1.5. Условия параллельности и перпендикулярности прямых
- •3.1.6. Определение длины отрезка прямой и координат его середины
- •3.2. Линии второго порядка
- •3.2.1. Окружность
- •3.2.2. Эллипс
- •3.2.3. Гипербола
- •3.2.4. Парабола
- •4. Введение в математический анализ
- •4.1. Понятие функции и аргумента Математический анализ изучает переменные величины и функциональные зависимости между ними.
- •4.2 Пределы функции в точке и на бесконечности
- •Замечательные пределы и их следствия
- •Бесконечно малые и бесконечно большие функции
- •Вычисление пределов
- •4.3. Непрерывность функции и точки разрыва
- •4.4. Производная функции
- •Геометрический и физический смысл производной
- •4.5. Дифференцирование функций
- •Дифференциал функции
- •Основные правила дифференцирования
- •4.6. Производные высших порядков
- •4.7. Исследование функций с помощью производных
- •4.7.1. Основные теоремы дифференциального исчисления
- •4.7.2.Признак монотонности функций
- •Необходимый и достаточный признак монотонности функции
- •4.7.3. Локальные экстремумы функций
- •Необходимый признак существования локального экстремума функции
- •Достаточный признак существования локального экстремума функции
- •4.7.4. Выпуклость, вогнутость графика функции и точки перегиба
- •НеобходимыЙ и достаточныЙ признак выпуклости и вогнутости
- •Необходимый признак существования точек перегиба
- •Достаточный признак существования точек перегиба
- •4.7.5. Асимптоты графиков функций
- •4.7.6. Общая схема исследования функций и построения графиков
- •Пример выполнения контрольной работы по темам 1-4
- •Контрольная работа
- •Решение:
- •Контрольные вопросы по темам 1-4, выносимые на экзамен
- •5. Функция двух переменных
- •5.1. Предел и Непрерывность функции двух переменных
- •5.2. Частные производные функции двух переменных
- •5.3. Полный и часные дифференциаЛы функции двух переменных
- •5.4. Частные производные высших порядков
- •5.5. Экстремум функции двух переменных
- •Достаточное условие экстремума
- •Отыскание наибольшего и наименьшего значения в замкнутой области
- •6. Неопределенный интеграл
- •6.1. Первообразная функция и ее свойства
- •Основные свойства первообразной
- •6.2. Неопределенный интеграл
- •Основные Свойства неопределенного интеграла
- •6.3. Основные методы интегрирования
- •6.3.1. Метод непосредственного интегрирования
- •6.3.2. Метод подстановки или замены переменной
- •6.3.3. Метод интегрирования по частям
- •6.3.4. Интегрирование рациональных дробей
- •Интегрирование выражений с квадратным трехчленом
- •6.3.5. Интегрирование иррациональных выражений
- •7. Определенный интеграл
- •7.1. Задачи, приводящие к понятию определенного интеграла
- •7.2. Определенный интеграл
- •Геометрический и физический смысл определенного интеграла
- •7.3. Основные свойства определенного интеграла
- •Необходимое и достаточное условия интегрируемости функций
- •7.4. Определенный интеграл с пеРеМенным верхним пределом. Связь между неопределенным и определеннЫм интеграЛами
- •Вывод формулы ньютона-лейбница
- •7.5. Основные методы вычисления определенного интеграла
- •Метод подстановки или замены переменной
- •Метод интегрирования по частям
- •ИнТинтЕгрирование четных и нечетных функцийна симметричном отрезке
- •7.6. Приложение определенного интеграла к решению геометрических и физических задач.
- •7.6.1. Расчет площади криволинейных фигур
- •7.6.2. Длина дуги кривой
- •7.6.3. Вычисление работы, выполненной действием переменной силы
- •8. Несобственные интегралы
- •8.1. Несобственные интегралы первого рода с бесконечными пределами интегрирования
- •Теоремы сходимости Для знакоположительных функций
- •Теорема абсолютной сходимости Для знакопеременной функции
- •8.2. Несобственные интегралы второго рода от функций с бесконечными разрывами.
- •9. Дифференциальные уравнения
- •9.1. Дифференциальные уравнения первого порядка
- •ГеометричесКий смысл решения дифференциальных уравнений первого порядка
- •9.1.1. Задача и теорема коши о существовании и единственности решения дифференциального уравнения первого порядка
- •9.1.2. Основные виды дифференциального уравнения первого порядка дифференциальНые Уравнения первого порядка с разделяющимися переменными
- •ДифференциальНые Однородные уравнения первого порядка
- •Линейные дифференциальНые уравнения первого порядка
- •9.2. Дифференциальные уравнения второго порядка
- •9.2.1. ГеометричесКий смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка
- •9.2.2. Дифференциальные уравнения второГо порядка, допускающие понижение порядка
- •9.2.3. Линейные дифференциальные уравнения второго порядка
- •ЛинейныЕ однородныЕ дифференциальныЕ уравнениЯ (лоду) второго порядка с постоянными коэффициентами
- •ЛинейныЕ нЕоднородныЕ дифференциальныЕ уравнениЯ (лнду) второго порядка с постоянными коэффициентами
- •Контрольные вопросы по темам 5-9, выносимые на экзамен
- •Литература
Геометрический и физический смысл производной
Геометрически
производная
определяет угловой коэффициент
касательной к графику функции у=f(x), т.е.
.
Пусть на графике функции у = f(x) задана точка М1(х1,у1). Проведем касательную K и нормаль N к графику функции в заданной точке. Нормаль – это прямая перпендикулярная к касательной.
Угловой коэффициент
касательной равен значению производной
в заданной точке
,
а угловой коэффициент нормали из условия
N┼K
равен
.
Тогда можно записать уравнения касательной и нормали к графику функции в заданной точке М1(х1,у1), используя уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом:
- ур. касательной;
- ур. нормали.
Физический смысл производной заключается в том, что она определяет мгновенную скорость движения.
Пусть материальная точка двигается по закону у = f(t), где у - пройденный путь за время t. Тогда скорость движения в момент времени t = t0 , будет равна:
.
Ниже будет дан пример расчета скорости и ускорения, исходя из физического смысла первой и второй производных.
4.5. Дифференцирование функций
Определение:
Функция у = f(x) называется дифференцируемой
на множестве D, если в каждой точке этого
множества существует конечная её
производная, т.е. для каждого хD
существует конечный предел
.
Дифференцирование функции – это означает нахождение её производной.
Теорема. Для того, чтобы функция у = f(x) была дифференцируемой на множестве D необходимо и достаточно, чтобы в каждой точке хD этого множества приращение функции ∆у можно было представить в виде: ∆у=А*∆х+α(∆х)*∆х, где А – множитель, который определяется значением производной в точке х: А=f/(x); α(∆х) – б.малая функция при ∆х0.
Действительно, если ∆у=А*∆х+α(∆х)*∆х, то существует конечный предел:
.
Дифференциал функции
Определение: Дифференциалом функции у=f(x) называется главная линейная часть приращения функции, которая обозначается в виде:
dy= А*∆х=f /(x)* ∆х.
Если возьмём линейную функцию у=х, то дифференциал этой функции будет равен: dх=(x)/* ∆х=1*∆х=∆х или dх =∆х, т.е. дифференциал аргумента равен его приращению.
Тогда
дифференциал любой функции будет равен:
dy=f
/(x)*dх.
Откуда производную можно представить
в виде отношения дифференциала функции
к дифференциалу аргумента:
.
Используя обозначение дифференциала, приращение функции можно представить в виде: ∆у=dy+α(∆х)*∆х. Второй нелинейный член приращения: α(∆х)*∆х является б.малой величиной более высокого порядка, чем ∆х и ввиду его малости можно отбросить из выражения. Тогда приращение функции приблизительно равно её дифференциалу: ∆у dy = f/(x)* ∆х.
Если представить приращение функции в виде: ∆у=f(x+∆х)-f(x) f/(x)* ∆х, тогда можно записать f(x+∆х) f(x) + f/(x)* ∆х. Данная формула используется для приближенного расчета значения функции в точке x+∆х по известному значению в точке х.
Теорема о связи между дифференцируемостью и непрерывностью функции. Если функция y=f(x) является дифференцируемой в точке х, то в этой точке она непрерывна.
Отметим, что всякая дифференцируемая на множестве D функция является непрерывной на этом множестве. Однако обратное утверждение не верно – не всякая непрерывная функция является дифференцируемой.
Таблица производных элементарных функций
1. С /= 0, где С = const
2.
где показатель
4.
5.
6.
7.
|
8.
9.
10.
11.
12.
13.
14.
|

3.