- •Введение
- •Элементы линейной алгебры
- •Решение системы линейных уравнений с двумя неизвестными методом Крамера
- •Дадим ряд определений.
- •Геометрический смысл решения системы линейных уравнений с двумя неизвестными
- •При этом возможны 3 случая:
- •Матрицы и определители второго порядка
- •Основные свойства определителей
- •1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
- •Геометрический смысл решения системы уравнений с тремя неизвестными
- •Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
- •1.3. Решение системы линейных уравнений с помощью матриц
- •Решение:
- •Метод Гаусса
- •Метод Жордано-Гаусса
- •Основные действия с матрицами
- •Матричный метод решения системы линейных уравнений с использованием обратной матрицы
- •2. Элементы Векторной алгебры
- •2.1. Векторные и скалярные величиы
- •2.2. Геометрические методы линейных операций над векторами
- •Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число (скаляр )
- •2.3. Координатная форма векторов
- •2.4. Линейные операции над векторами в координатной форме
- •2 .5. Определение длины и направления векторов
- •2.6. Скалярное произведение векторов
- •2.7. Векторное произведение векторов
- •Свойства векторного произведения
- •Векторное произведение в координатной форме
- •Элементы аналитической геометрии
- •3.1. Прямая линия на плоскости
- •3.1.1. Общее уравнение прямой и уравнение прямой с угловым коэффициентом
- •3 .1.2. Уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом
- •3.1.3. Уравнение прямой, проходящей через две заданные точки
- •3 .1.4. Угол между двумя прямыми
- •3.1.5. Условия параллельности и перпендикулярности прямых
- •3.1.6. Определение длины отрезка прямой и координат его середины
- •3.2. Линии второго порядка
- •3.2.1. Окружность
- •3.2.2. Эллипс
- •3.2.3. Гипербола
- •3.2.4. Парабола
- •4. Введение в математический анализ
- •4.1. Понятие функции и аргумента Математический анализ изучает переменные величины и функциональные зависимости между ними.
- •4.2 Пределы функции в точке и на бесконечности
- •Замечательные пределы и их следствия
- •Бесконечно малые и бесконечно большие функции
- •Вычисление пределов
- •4.3. Непрерывность функции и точки разрыва
- •4.4. Производная функции
- •Геометрический и физический смысл производной
- •4.5. Дифференцирование функций
- •Дифференциал функции
- •Основные правила дифференцирования
- •4.6. Производные высших порядков
- •4.7. Исследование функций с помощью производных
- •4.7.1. Основные теоремы дифференциального исчисления
- •4.7.2.Признак монотонности функций
- •Необходимый и достаточный признак монотонности функции
- •4.7.3. Локальные экстремумы функций
- •Необходимый признак существования локального экстремума функции
- •Достаточный признак существования локального экстремума функции
- •4.7.4. Выпуклость, вогнутость графика функции и точки перегиба
- •НеобходимыЙ и достаточныЙ признак выпуклости и вогнутости
- •Необходимый признак существования точек перегиба
- •Достаточный признак существования точек перегиба
- •4.7.5. Асимптоты графиков функций
- •4.7.6. Общая схема исследования функций и построения графиков
- •Пример выполнения контрольной работы по темам 1-4
- •Контрольная работа
- •Решение:
- •Контрольные вопросы по темам 1-4, выносимые на экзамен
- •5. Функция двух переменных
- •5.1. Предел и Непрерывность функции двух переменных
- •5.2. Частные производные функции двух переменных
- •5.3. Полный и часные дифференциаЛы функции двух переменных
- •5.4. Частные производные высших порядков
- •5.5. Экстремум функции двух переменных
- •Достаточное условие экстремума
- •Отыскание наибольшего и наименьшего значения в замкнутой области
- •6. Неопределенный интеграл
- •6.1. Первообразная функция и ее свойства
- •Основные свойства первообразной
- •6.2. Неопределенный интеграл
- •Основные Свойства неопределенного интеграла
- •6.3. Основные методы интегрирования
- •6.3.1. Метод непосредственного интегрирования
- •6.3.2. Метод подстановки или замены переменной
- •6.3.3. Метод интегрирования по частям
- •6.3.4. Интегрирование рациональных дробей
- •Интегрирование выражений с квадратным трехчленом
- •6.3.5. Интегрирование иррациональных выражений
- •7. Определенный интеграл
- •7.1. Задачи, приводящие к понятию определенного интеграла
- •7.2. Определенный интеграл
- •Геометрический и физический смысл определенного интеграла
- •7.3. Основные свойства определенного интеграла
- •Необходимое и достаточное условия интегрируемости функций
- •7.4. Определенный интеграл с пеРеМенным верхним пределом. Связь между неопределенным и определеннЫм интеграЛами
- •Вывод формулы ньютона-лейбница
- •7.5. Основные методы вычисления определенного интеграла
- •Метод подстановки или замены переменной
- •Метод интегрирования по частям
- •ИнТинтЕгрирование четных и нечетных функцийна симметричном отрезке
- •7.6. Приложение определенного интеграла к решению геометрических и физических задач.
- •7.6.1. Расчет площади криволинейных фигур
- •7.6.2. Длина дуги кривой
- •7.6.3. Вычисление работы, выполненной действием переменной силы
- •8. Несобственные интегралы
- •8.1. Несобственные интегралы первого рода с бесконечными пределами интегрирования
- •Теоремы сходимости Для знакоположительных функций
- •Теорема абсолютной сходимости Для знакопеременной функции
- •8.2. Несобственные интегралы второго рода от функций с бесконечными разрывами.
- •9. Дифференциальные уравнения
- •9.1. Дифференциальные уравнения первого порядка
- •ГеометричесКий смысл решения дифференциальных уравнений первого порядка
- •9.1.1. Задача и теорема коши о существовании и единственности решения дифференциального уравнения первого порядка
- •9.1.2. Основные виды дифференциального уравнения первого порядка дифференциальНые Уравнения первого порядка с разделяющимися переменными
- •ДифференциальНые Однородные уравнения первого порядка
- •Линейные дифференциальНые уравнения первого порядка
- •9.2. Дифференциальные уравнения второго порядка
- •9.2.1. ГеометричесКий смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка
- •9.2.2. Дифференциальные уравнения второГо порядка, допускающие понижение порядка
- •9.2.3. Линейные дифференциальные уравнения второго порядка
- •ЛинейныЕ однородныЕ дифференциальныЕ уравнениЯ (лоду) второго порядка с постоянными коэффициентами
- •ЛинейныЕ нЕоднородныЕ дифференциальныЕ уравнениЯ (лнду) второго порядка с постоянными коэффициентами
- •Контрольные вопросы по темам 5-9, выносимые на экзамен
- •Литература
Вычисление пределов
При вычислении пределов необходимо выделить случаи когда функция определена или неопределена в предельной точке.
Если
функция определена в предельной точке
х=х0,
то вычисление предела сводится к
вычислению частного значения функции
в этой точке путем подстановки в неё
значения аргумента, т.е.
.
Пример.
.
Если
функция неопределена в предельной точке
х=х0,
то для характерных неопределенностей
типа:
имеется ряд практических приемов
вычисления пределов для раскрытия этих
неопределенностей.
1.
Неопределенность
.
Если эта неопределенность возникла для тригонометрических функций, то можно использовать первый замечательный предел и его следствия, а также можно провести замену эквивалентных б.малых функций.
П
ример.
=
sin2
x=(sinx)2~x2;
arctg3x~3x;
(e6x-1)
~6x
=
=
.
Если эта неопределенность возникла при делении многочленов, то нужно в числителе и знаменателе выделить и сократить сомножитель, стремящийся к 0.
Пример.
.
Неопределенность
раскрывается путем деления числителя
и знаменателя дроби на наибольшую
степень переменной х и замены б.большой
переменной х→
на новую б.малую переменную
0.
П
ример.
0
при х→
=
.
Неопределенности
путем
преобразования приводятся к
неопределенностям вида:
.
Примеры.
1)
;
2)
.
Неопределенность
раскрывается с помощью второго
замечательного предела.
Пример.
=
2x=u,
х=1/2u;
х 0;u0
=
=
=
.
4.3. Непрерывность функции и точки разрыва
Определение: Функция у=f(х) называется непрерывной в точке х=х0, если выполняются три условия:
Функция определена в точке х0, т.е. существует частное значение функции f(x0);
Существуют равные правый и левый пределы функции в точке х0;
Эти пределы равны частному значению функции в этой точке, т.е.
Е
сли
в точке х0
не выполняется хотя бы одно из указанных
условий, то точка х0
называется точкой разрыва. Различают
два вида разрывов: разрывы I и II рода.
К
точкам разрыва I рода относят точки
скачка функции, когда существуют правый
и левый пределы функции, но они не равны
друг другу:
.
Величина h=
называется величиной скачка.
К
точкам разрыва II рода относят точки
бесконечного разрыва, в которых предел
функции равен бесконечности. Так, функция
имеет точку бесконечного разрыва II рода
в точке х0=0,
т.к.
.
Отметим, что все элементарные функции и их комбинации непрерывны в области их определения.
4.4. Производная функции
Переходим к дифференциальному исчислению. Дифференциальное исчисление основывается на понятии производной функции.
Введем понятие
производной функции. Пусть на некотором
множестве D задана непрерывная функция
у = f(х). Возьмем произвольную точку х из
этого множества (хD)
и дадим аргументу приращение
х.
Причем так, чтобы (х+
х)D
При этом функция получит приращение:
.
Определение:
Производной функции у = f(х) называется
предел отношения приращения функции
к приращению аргумента
,
когда приращение аргумента стремится
к нулю
.
Производная
обозначается:
.
Е
сли
функция у = f(x) имеет конечную производную
в каждой точке множества D, то производная
является также функцией от х. Название
производной можно рассматривать как
функцию, произведенную от исходной
функции у = f(x).
