- •Введение
- •Элементы линейной алгебры
- •Решение системы линейных уравнений с двумя неизвестными методом Крамера
- •Дадим ряд определений.
- •Геометрический смысл решения системы линейных уравнений с двумя неизвестными
- •При этом возможны 3 случая:
- •Матрицы и определители второго порядка
- •Основные свойства определителей
- •1.2. Решение системы линейных уравнений с тремя неизвестными методом Крамера
- •Геометрический смысл решения системы уравнений с тремя неизвестными
- •Введем понятие матрицы и определителя третьего порядка. Матрицы и определители третьего порядка
- •1.3. Решение системы линейных уравнений с помощью матриц
- •Решение:
- •Метод Гаусса
- •Метод Жордано-Гаусса
- •Основные действия с матрицами
- •Матричный метод решения системы линейных уравнений с использованием обратной матрицы
- •2. Элементы Векторной алгебры
- •2.1. Векторные и скалярные величиы
- •2.2. Геометрические методы линейных операций над векторами
- •Сложение векторов
- •Вычитание векторов
- •Умножение вектора на число (скаляр )
- •2.3. Координатная форма векторов
- •2.4. Линейные операции над векторами в координатной форме
- •2 .5. Определение длины и направления векторов
- •2.6. Скалярное произведение векторов
- •2.7. Векторное произведение векторов
- •Свойства векторного произведения
- •Векторное произведение в координатной форме
- •Элементы аналитической геометрии
- •3.1. Прямая линия на плоскости
- •3.1.1. Общее уравнение прямой и уравнение прямой с угловым коэффициентом
- •3 .1.2. Уравнение прямой, проходящей через заданную точку с заданным угловым коэффициентом
- •3.1.3. Уравнение прямой, проходящей через две заданные точки
- •3 .1.4. Угол между двумя прямыми
- •3.1.5. Условия параллельности и перпендикулярности прямых
- •3.1.6. Определение длины отрезка прямой и координат его середины
- •3.2. Линии второго порядка
- •3.2.1. Окружность
- •3.2.2. Эллипс
- •3.2.3. Гипербола
- •3.2.4. Парабола
- •4. Введение в математический анализ
- •4.1. Понятие функции и аргумента Математический анализ изучает переменные величины и функциональные зависимости между ними.
- •4.2 Пределы функции в точке и на бесконечности
- •Замечательные пределы и их следствия
- •Бесконечно малые и бесконечно большие функции
- •Вычисление пределов
- •4.3. Непрерывность функции и точки разрыва
- •4.4. Производная функции
- •Геометрический и физический смысл производной
- •4.5. Дифференцирование функций
- •Дифференциал функции
- •Основные правила дифференцирования
- •4.6. Производные высших порядков
- •4.7. Исследование функций с помощью производных
- •4.7.1. Основные теоремы дифференциального исчисления
- •4.7.2.Признак монотонности функций
- •Необходимый и достаточный признак монотонности функции
- •4.7.3. Локальные экстремумы функций
- •Необходимый признак существования локального экстремума функции
- •Достаточный признак существования локального экстремума функции
- •4.7.4. Выпуклость, вогнутость графика функции и точки перегиба
- •НеобходимыЙ и достаточныЙ признак выпуклости и вогнутости
- •Необходимый признак существования точек перегиба
- •Достаточный признак существования точек перегиба
- •4.7.5. Асимптоты графиков функций
- •4.7.6. Общая схема исследования функций и построения графиков
- •Пример выполнения контрольной работы по темам 1-4
- •Контрольная работа
- •Решение:
- •Контрольные вопросы по темам 1-4, выносимые на экзамен
- •5. Функция двух переменных
- •5.1. Предел и Непрерывность функции двух переменных
- •5.2. Частные производные функции двух переменных
- •5.3. Полный и часные дифференциаЛы функции двух переменных
- •5.4. Частные производные высших порядков
- •5.5. Экстремум функции двух переменных
- •Достаточное условие экстремума
- •Отыскание наибольшего и наименьшего значения в замкнутой области
- •6. Неопределенный интеграл
- •6.1. Первообразная функция и ее свойства
- •Основные свойства первообразной
- •6.2. Неопределенный интеграл
- •Основные Свойства неопределенного интеграла
- •6.3. Основные методы интегрирования
- •6.3.1. Метод непосредственного интегрирования
- •6.3.2. Метод подстановки или замены переменной
- •6.3.3. Метод интегрирования по частям
- •6.3.4. Интегрирование рациональных дробей
- •Интегрирование выражений с квадратным трехчленом
- •6.3.5. Интегрирование иррациональных выражений
- •7. Определенный интеграл
- •7.1. Задачи, приводящие к понятию определенного интеграла
- •7.2. Определенный интеграл
- •Геометрический и физический смысл определенного интеграла
- •7.3. Основные свойства определенного интеграла
- •Необходимое и достаточное условия интегрируемости функций
- •7.4. Определенный интеграл с пеРеМенным верхним пределом. Связь между неопределенным и определеннЫм интеграЛами
- •Вывод формулы ньютона-лейбница
- •7.5. Основные методы вычисления определенного интеграла
- •Метод подстановки или замены переменной
- •Метод интегрирования по частям
- •ИнТинтЕгрирование четных и нечетных функцийна симметричном отрезке
- •7.6. Приложение определенного интеграла к решению геометрических и физических задач.
- •7.6.1. Расчет площади криволинейных фигур
- •7.6.2. Длина дуги кривой
- •7.6.3. Вычисление работы, выполненной действием переменной силы
- •8. Несобственные интегралы
- •8.1. Несобственные интегралы первого рода с бесконечными пределами интегрирования
- •Теоремы сходимости Для знакоположительных функций
- •Теорема абсолютной сходимости Для знакопеременной функции
- •8.2. Несобственные интегралы второго рода от функций с бесконечными разрывами.
- •9. Дифференциальные уравнения
- •9.1. Дифференциальные уравнения первого порядка
- •ГеометричесКий смысл решения дифференциальных уравнений первого порядка
- •9.1.1. Задача и теорема коши о существовании и единственности решения дифференциального уравнения первого порядка
- •9.1.2. Основные виды дифференциального уравнения первого порядка дифференциальНые Уравнения первого порядка с разделяющимися переменными
- •ДифференциальНые Однородные уравнения первого порядка
- •Линейные дифференциальНые уравнения первого порядка
- •9.2. Дифференциальные уравнения второго порядка
- •9.2.1. ГеометричесКий смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка
- •9.2.2. Дифференциальные уравнения второГо порядка, допускающие понижение порядка
- •9.2.3. Линейные дифференциальные уравнения второго порядка
- •ЛинейныЕ однородныЕ дифференциальныЕ уравнениЯ (лоду) второго порядка с постоянными коэффициентами
- •ЛинейныЕ нЕоднородныЕ дифференциальныЕ уравнениЯ (лнду) второго порядка с постоянными коэффициентами
- •Контрольные вопросы по темам 5-9, выносимые на экзамен
- •Литература
3.2.1. Окружность
Определение: Окружность – это линия второго порядка, которая представляет собой геометрическое место точек плоскости, равноудаленных от одной заданной точки, называемой центром.
Если центр находится в начале координат, то окружность задается каноническим уравнением второй степени вида: х2+у2=R2 , где R – радиус окружности; х,у – текущие координаты точек, лежащих на окружности.
Д
ля
вывода данного уравнения возьмем на
окружности произвольную точку М(х;у).
Отрезок ОМ=R является гипотенузой в
прямоугольном треугольнике ОМР, а катеты
определяются координатами х и у точки
М. Уравнение окружности получается по
теореме Пифагора: х2+у2=R2,
которое называется каноническим
уравнением окружности с несмещенным
центром.
Если центр окружности находится в точке С(х0;у0), то уравнение окружности со смещенным центром будет иметь
вид: (х-х0)2+(у-у0)2=R2.
Построение окружности выполняется с помощью циркуля.
3.2.2. Эллипс
Определение: Эллипс – это линия второго порядка, которая представляет собой геометрическое место точек плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная и равная большой оси эллипса.
Эллипс
с несмещенным центром задается
каноническим уравнением второй степени
вида:
,
где а и в - полуоси, х,у – текущие координаты
точек, лежащих на эллипсе. Центр симметрии
находится в начале координат. Осями
симметрии служат координатные оси.
При рассмотрении эллипса возможны два случая:
1. Если ав, то а называется большая полуось, лежащая на координатной оси Ох, а в – малая полуось, лежащая на координатной оси Оу;
2. Если ав, то а называется малая полуось, лежащая на координатной оси Ох, а в–большая полуось, лежащая на координатной оси Оу.
Фокусы F1 и F2 всегда лежат на большой оси эллипса, причем симметрично относительно центра симметрии на расстоянии:
,
где величина "с" определяет фокусное расстояние.
Для характеристики формы эллипса вводится эксцентриситет.
Определение:
Эксцентриситетом эллипса называется
отношение фокусного расстояния к длине
его большой полуоси: =
,
если ав
и =
,
если ва.
З
начение
эксцентриситета меняется в пределах
0≤≤1.
При этом форма эллипса изменяется от
окружности (ε=0, при а=в=R) и, вытягиваясь,
вырождается в прямую (ε=1, при а>>в).
Уравнение
эллипса
выводится из его основного свойства,
представленного в определении. Возьмём
на эллипсе произвольную точку М(х;у).
Расстояния r1
и r2
от фокусов F1
и F2 до
точки М(х;у) называются фокальными
радиусами.
В соответствии с определением сумма фокальных радиусов есть величина постоянная, равная большой оси эллипса: r1 + r2 = 2а (при ав) - основное свойство эллипса. Для вывода уравнения эллипса необходимо выразить фокальные радиусы r1 и r2 через координаты точки М(х;у) и фокусов F1(с;0) и F2(-с;0)и подставить в это равенство.
Если центр симметрии смещен и находится в точке С(х0;у0), то уравнение эллипса со смещенным центром имеет вид:
.
Построение эллипса рассмотрим ниже на примерах.
Пример.
Определить вид, параметры и построить
линию, заданную уравнением:
.
Решение:
1. Это эллипс с несмещенным центром вида:
.
2.Найдем
параметры:
-
большая полуось на оси Ох;
-
малая полуось на оси Оу;
-
фокусное расстояние
=
1-
эксцентриситет.
Фокусы F1(4.6;0) и F2(-4.6;0) лежат на большой оси, совпадающей с осью Ох, симметрично, на расстоянии с=4.6 относительно начала координат.
3. Построение эллипса (см. рисунок выше) выполним по этапам:
строим систему координат Оху;
на координатных осях симметрично относительно начала координат откладываем большую и малую полуоси (а=5, в=2) и показываем вершины эллипса А1,А2,В1,В2;
через вершины эллипса параллельно координатным осям строим осевой прямоугольник;
вписываем эллипс в осевой прямоугольник;
на большой оси, совпадающей с осью Ох, симметрично относительно начала координат показываем фокусы F1(4.6;0) и F2(-4.6;0).
