
- •1. Определение электронных приборов. Классификация электронных приборов
- •2. Режимы и параметры электронных приборов
- •3.Электропроводность материалов.
- •4. Понятие электрохимического потенциала (уровня Ферми).
- •5.Собственная проводимость.
- •6.Примесная электропроводность полупроводниковых материалов.
- •7. Электрические переходы в полупроводниковых приборах
- •10. Электронно-дырочный переход в неравновесном состоянии
- •11.Обратное включение.
- •12. Вольт-амперная характеристика p-n-перехода
- •13. Свойства p-n-перехода
- •14 Устройство и принцип действия полупровдниковых диодов.
- •15. Классификация полупроводниковых диодов.
- •16. Система условных обозначений диодов.
- •17. Выпрямительные диоды
- •18. Стабилитроны
- •19. Варикапы
- •20. Импульсные диоды
- •21. Диоды с накоплением заряда (днз).
- •22. Диоды с барьером Шотки.
- •23 Туннельные и обращённые диоды
- •25. Определение и устройство биполярного транзистора.
- •26. Классификация биполярных транзисторов.
- •27. Система обозначений транзисторов.
- •28. Режимы работы биполярного транзистора.
- •29. Схемы включения биполярного транзистора.
- •30. Принцип работы биполярного транзи стора.
- •31.Токи в биполярном транзисторе.
- •32. Формальная модель транзистора.
- •33.Системы параметров транзистора.
- •34. Статические характеристики биполярных транзисторов схеме с об
- •35. Влияние температуры на вах транзистора
- •36. Дифференциальные параметры транзистора.
- •37. Определение h-параметров транзистора по статическим вах.
- •38. Большой Сигнал Модель Эберса-Молла
- •39.Малосигнальная модель бт
- •40. Физические параметры транзистора.
- •41. Эквивалентные схемы замещения транзистора.
- •42. Работа биполярного транзистора в режиме усиления.
- •43. Частотные свойства транзистора.
- •44. Работа транзистора в импульсном режиме
- •45. Основные параметры
- •46. Область применения
- •47 Определение и классификация полевых транзисторов.
- •48. Устройство и обозначение полевых транзисторов.
- •49. Полевой транзистор с управляющим p-n переходом.
- •50. Полевые транзисторы с изолированным затвором (мдп - транзисторы)
- •51. Статистические вольтамперные хар-и (вах) пол. Транзисторов.
- •52. Влияние температуры на вах полевых транзисторов.
- •54. Работа полевого транзистора в режиме усиления.
- •55. Частотные свойства полевых транзисторов.
- •56. Основные параметры полевых транзисторов.
- •57 Определение и классификация переключающих электронных приборов.
- •58. Устройство и обозначение тиристоров.
- •59 Диодные тиристоры.
- •60. Триодные тиристоры.
- •61. Симметричные тиристоры (симисторы).
- •62 Основные параметры транзисторов.
- •63 Однопереходные транзисторы.
- •64 Основные понятия оптоэлектроники.
- •65 Источники оптического излучения.
- •66 Светодиоды.
- •67 Приемники оптического излучения.
- •68 Фоторезисторы.
- •69 Фотодиоды.
- •70 Фототранзистор
- •71 Оптроны
- •72 Классификация приборов для отображения информации.
- •73 Электронно-лучевая трубка (элт).
- •78 Осциллографические трубки.
- •79 Индикаторные трубки.
- •80 Кинескопы.
- •81 Система обозначений элт.
- •82 Вакуумные люминесцентные индикаторы.
- •83Вакуумные накаливаемые индикаторы.
- •84 Газоразрядные индикаторные приборы.
- •85 Полупроводниковые индикаторы.
- •86 Жидкокристаллические индикаторы
- •87.Устройство и принцип действия приборов с зарядовой связью
- •88. На основе пзс, таким образом, можно строить сдвиговые регистры по-
- •89. Параметры приборов с зарядовой связью
- •91. Шумы электронных приборов и далее до 98.
21. Диоды с накоплением заряда (днз).
В ДНЗ база изготовляется неравномерно легированной по длине. У таких диодов концентрация примеси в базе при приближению к p-n-переходу уменьшается, поэтому неравномерной оказывается и концентрация основных носителей базы – электронов, если база имеет проводимость n-типа. За счет этого электроны диффундируют в сторону p-n-перехода, оставляя в глубине базы избыточный положительный заряд атомов донор-
ной примеси, а вблизи перехода избыточный заряд электронов. Между этими зарядами возникает электрическое поле, направленное в сторону перехода. Под действием этого поля дырки, инжектированные в базу при прямом включении диода, концентрируются (накапливаются) в базе у границы перехода. При переключении диода с прямого на обратное направление эти дырки под действием поля внутри перехода быстро уходят из базы в эмиттер, и время восстановления обратного сопротивления уменьшается.
Для изготовления таких диодов применяются меза- и эпитаксиальная технология.
22. Диоды с барьером Шотки.
время обратного восстановления диода tвос – время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения (доли наносекунд …доли микросекунд). Для уменьшения tвос применяют специальные разновидности импульсных диодов: диоды с барьером Шотки (ДБШ), диоды с накоплением заряда (ДНЗ). В ДБШ переход выполнен на основе выпрямляющего контакта металл-полупроводник, в котором работа выхода из металла больше, чем работа выхода из полупроводника. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе, их быстродействие зависит только от скорости процесса перезаряда барьерной емкости. Конструктивно ДБШ выполняются в виде пластины низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла. Инерционность ДБШ в основном определяется емкостью выпрямляющего контакта, которая может быть меньше 0,01 пФ.
23 Туннельные и обращённые диоды
Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт-амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении.Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии. Вольт-амперная характеристика туннельного диода показана на рис. 2.26, а.
2.17. Параметры туннельных диодов
Пиковый ток I п (от сотен микроампер – до сотен миллиампер).
Напряжение пика U п – прямое напряжение, соответствующее току п I .
Ток впадины I в , соответствующий напряжению U в .
Напряжение впадины – прямое напряжение, соответствующее току в I . Напряжение раствора U p – прямое напряжение, соответствующее типовому току на второй восходящей ветви ВАХ, определяет возможный скачок напряжения на нагрузке при работе туннельного диода в схеме переключения.
24.Разновидностью
туннельных диодов являются обращенные
диоды,
изготовляемые на основе полупроводника
с концентрациями примесей в р- и n -
областях диода, меньших, чем в туннельных,
но больших, чем в обычных выпрямительных
диодах.
Вольт-амперная характеристика обращенного диода представлена на рис. 2.28.
Прямая ветвь ВАХ обращенного диода аналогична прямой ветви обычного выпрямительного диода, а обратная ветвь аналогична обратной ветви ВАХ туннельного диода, т.к. при обратных напряжениях происходит туннельный переход электронов из валентной зоны р-области в зону проводимости n-области и при малых обратных напряжениях (десятки милливольт) обратные токи оказываются большими. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но проводящее направление в них соответствует обратному включению, а запирающее – прямому включению. Благодаря этому их можно использовать в детекторах и смесителях на СВЧ в качестве переключателей.