Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по ЭП - 2010 (Русакович) [9798 вопросов].doc
Скачиваний:
344
Добавлен:
15.06.2014
Размер:
5.76 Mб
Скачать

4. Понятие электрохимического потенциала (уровня Ферми).

Вероятность нахождения свободного электрна в энергитическом состоянии W опредяляется функцией

Полупроводники с донорной примесью называются электронными полупроводниками, или полупроводниками n-типа.

С повышением температуры уровень Ферми смещается к середине запрещённой зоны.В случае полупроводника с акцепторной примесью электроны являются неосновными носителями заряда,дырки – основными носителями, а полупроводник с акцепторной примесью называют дырочным, или полупроводником p-типа.

С повышением температуры уровень Ферми смещается к середине запрещённой зоны.

5.Собственная проводимость.

Собственная и примесная проводимость полупроводников

1. Особенности полупроводников

Строение полупроводников.В полупроводниках атомы связаны ковалентными (парноэлектронными) связями, которые при низких температурах и освещенности прочны. С ростом же температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и "дырку". Реальными частицами являются лишь электроны (e). Электронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочерёдно замещая друг друга, что эквивалентно движению “дырок” в противоположном направлении. “Дырке” условно приписывается “+” заряд.В чистых полупроводниках концентрация свободных электронов и “дырок” одинаковы. Электронно-дырочная проводимость – проводимость, вызванная образованием свободных носителей заряда (электронов и “дырок”), образующихся при разрыве ковалентных связей, называется собственной проводимостью.

6.Примесная электропроводность полупроводниковых материалов.

Примесная проводимость – проводимость, обусловленная образованием свободных носителей заряда при внесении примесей иной валентности (n) Донорная примесь nпримеси > nполупроводник Мышьяк в германий nприм. =5; nп/прово-к=4 

Каждый атом примеси вносит свободный электрон

Полупроводники n – типа с донорной примесью Основные носители заряда электроны Не основные носители о – “дырки” Проводимость электронная Акцепторная примесь nпримеси < n полупроводник

Индий в германий nприм. =3; nп/прово-к=4 Каждый атом примеси захватывает  электрон из основного полупроводника, создавая дополнительную дырку.

7. Электрические переходы в полупроводниковых приборах

Электрическим переходом называется переходный слой между областями твёрдого тела с различными типами или значениями проводимости. Чаще всего используется электрический переход между полупроводниками n- и p-типа, называемый электронно-дырочным переходом, или p-n - переходом. Используются также переходы между областями с одинаковым типом электропроводности,но с различными значениями удельной проводимости (n+-n; p+-p). Знак «+» отмечает область с большей концентрацией примеси.

Широкое применение получили переходы металл-полупроводник. Электрические переходы могут создаваться как на основе полупроводников с одинаковой шириной запрещённой зоны (гомопереходы), так и с различными значениями ширины (гетеропереходы).

Электрические переходы используются практически во всех полупроводниковых приборах. Физические процессы в переходах лежат в основе действия большинства полупроводниковых приборов.

Широко применяются несимметричные p-n-переходы, в которых концентрация примесей в эмиттере значительно больше, чем в другой

области – базе. В симметричных p-n-переходах концентрация акцепторов в p-области равна концентрации доноров в n-области.

8-9 Электронно-дырочный переход в равновесном состоянии

Контактная разность потенциалов.

Равновесие соответствует нулевому внешнему напряжению на переходе. Поскольку концентрация электронов в n-области значительно больше, чем в p-области, а концентрация дырок в p-области больше, чем в n-области. Вследствие этого заряды будут диффундировать из области с большей концентрацией в область с меньшей концентрацией, что приведёт к появлению диффузионного тока электронов и дырок.

На границе p- и n-областей создаётся слой, обеднённый подвижными носителями. В приконтактной области n-типа появляется нескомпенсированный заряд положительных ионов, а в дырочной области – нескомпенсированный заряд отрицательных ионов примесей. Таким образом, электронный полупроводник заряжается положительно, а дырочный – отрицательно.

Между областями полупроводника с различными типами электропроводности возникает электрическое поле напряжённостью Е. Образовавшийся двойной слой электрических зарядов называется запирающим, он обеднён основными носителями и имеет вследствие этого низкую электропроводность.

Вектор напряженности поля направлен так, что он препятствует диффузионному движению основных носителей и ускоряет неосновные носители. Этому полю соответствует контактная разность потенциалов ϕ k , связанная с взаимной диффузией носителей. За пределами p-n-перехода полупроводниковые области остаются нейтральными. Движение неосновных носителей образует дрейфовый ток, направленный навстречу диффузионному току. Итак, в условиях равновесия встречные дрейфовый и диффузионный токи должны быть равны, т.е.

Тогда выражение для контактной разности потенциалов ϕ k в p-n-переходе