- •1. Определение электронных приборов. Классификация электронных приборов
- •2. Режимы и параметры электронных приборов
- •3.Электропроводность материалов.
- •4. Понятие электрохимического потенциала (уровня Ферми).
- •5.Собственная проводимость.
- •6.Примесная электропроводность полупроводниковых материалов.
- •7. Электрические переходы в полупроводниковых приборах
- •10. Электронно-дырочный переход в неравновесном состоянии
- •11.Обратное включение.
- •12. Вольт-амперная характеристика p-n-перехода
- •13. Свойства p-n-перехода
- •14 Устройство и принцип действия полупровдниковых диодов.
- •15. Классификация полупроводниковых диодов.
- •16. Система условных обозначений диодов.
- •17. Выпрямительные диоды
- •18. Стабилитроны
- •19. Варикапы
- •20. Импульсные диоды
- •21. Диоды с накоплением заряда (днз).
- •22. Диоды с барьером Шотки.
- •23 Туннельные и обращённые диоды
- •25. Определение и устройство биполярного транзистора.
- •26. Классификация биполярных транзисторов.
- •27. Система обозначений транзисторов.
- •28. Режимы работы биполярного транзистора.
- •29. Схемы включения биполярного транзистора.
- •30. Принцип работы биполярного транзи стора.
- •31.Токи в биполярном транзисторе.
- •32. Формальная модель транзистора.
- •33.Системы параметров транзистора.
- •34. Статические характеристики биполярных транзисторов схеме с об
- •35. Влияние температуры на вах транзистора
- •36. Дифференциальные параметры транзистора.
- •37. Определение h-параметров транзистора по статическим вах.
- •38. Большой Сигнал Модель Эберса-Молла
- •39.Малосигнальная модель бт
- •40. Физические параметры транзистора.
- •41. Эквивалентные схемы замещения транзистора.
- •42. Работа биполярного транзистора в режиме усиления.
- •43. Частотные свойства транзистора.
- •44. Работа транзистора в импульсном режиме
- •45. Основные параметры
- •46. Область применения
- •47 Определение и классификация полевых транзисторов.
- •48. Устройство и обозначение полевых транзисторов.
- •49. Полевой транзистор с управляющим p-n переходом.
- •50. Полевые транзисторы с изолированным затвором (мдп - транзисторы)
- •51. Статистические вольтамперные хар-и (вах) пол. Транзисторов.
- •52. Влияние температуры на вах полевых транзисторов.
- •54. Работа полевого транзистора в режиме усиления.
- •55. Частотные свойства полевых транзисторов.
- •56. Основные параметры полевых транзисторов.
- •57 Определение и классификация переключающих электронных приборов.
- •58. Устройство и обозначение тиристоров.
- •59 Диодные тиристоры.
- •60. Триодные тиристоры.
- •61. Симметричные тиристоры (симисторы).
- •62 Основные параметры транзисторов.
- •63 Однопереходные транзисторы.
- •64 Основные понятия оптоэлектроники.
- •65 Источники оптического излучения.
- •66 Светодиоды.
- •67 Приемники оптического излучения.
- •68 Фоторезисторы.
- •69 Фотодиоды.
- •70 Фототранзистор
- •71 Оптроны
- •72 Классификация приборов для отображения информации.
- •73 Электронно-лучевая трубка (элт).
- •78 Осциллографические трубки.
- •79 Индикаторные трубки.
- •80 Кинескопы.
- •81 Система обозначений элт.
- •82 Вакуумные люминесцентные индикаторы.
- •83Вакуумные накаливаемые индикаторы.
- •84 Газоразрядные индикаторные приборы.
- •85 Полупроводниковые индикаторы.
- •86 Жидкокристаллические индикаторы
- •87.Устройство и принцип действия приборов с зарядовой связью
- •88. На основе пзс, таким образом, можно строить сдвиговые регистры по-
- •89. Параметры приборов с зарядовой связью
- •91. Шумы электронных приборов и далее до 98.
10. Электронно-дырочный переход в неравновесном состоянии
Если к p-n-переходу подключить источник напряжения, равновесное состояние нарушится, и в цепи будет протекать ток. Различают прямое и обратное включения p-n-перехода.
10.Прямое включение. Пусть внешнее напряжение приложено плюсом к p-области, а минусом – к n-области. При этом оно противоположно по знаку контактной разности потенциалов. Так как концентрация подвижных носителей в p-n-переходе значительно ниже, чем в p- и n-областях, сопротивление p-n-перехода значительно выше сопротивления p- и n-областей. Можно считать, что приложенное напряжение полностью падает на переходе. Основные носители будут двигаться к контакту, сокращая дефицит носителей в p-n-переходе и уменьшать сопротивление и толщину p-n-перехода. Поток основных носителей через контакт увеличится. Ток, протекающий через переход, в данном случае называется прямым, а напряжение, приложенное к переходу – прямым напряжением. Диффузия дырок через переход приводит к увеличению концентрации дырок за переходом. Возникающий при этом градиент концентрации дырок обусловливает диффузионное проникновение их в глубь n-области, где они являются неосновными носителями. Это явление называется инжекцией (впрыскиванием). Инжекция дырок не нарушает электрической нейтральности в n-области, т.к. она сопровождается поступлением из внешней цепи такого же количества электронов.

11.Обратное включение.
Если внешнее напряжение приложено плюсом к n-области, а минусом к – p-области, то оно совпадает по знаку с контактной разностью потенциалов В этом случае напряжение на переходе возрастает, и высота потенциального барьера становится выше, чем при отсутствии напряжения.
Направление результирующего тока противоположно направлению прямого тока, поэтому он называется обратным током, а напряжение, вызывающее обратный ток, называется обратным напряжением. Поле в переходе является ускоряющим лишь для неосновных носителей. Под действием этого поля концентрация неосновных носителей на границе перехода снижается и появляется градиент концентрации носителей заряда. Это явление называется экстракцией носителей.
Т
ак
как число неосновных носителей мало,
ток экстракции через переход намного
меньше прямого тока. Он практически
не зависит от приложенного напряжения
и является током насыщения.
Таким образом, p-n-переход обладает несимметричной проводимостью: проводимость в прямом направлении значительно превышает проводимость p-n-перехода в обратном направлении, что нашло широкое применение при изготовлении полупроводниковых приборов.
12. Вольт-амперная характеристика p-n-перехода
Вольт-амперная характеристика p-n-перехода представляет собой зависимость тока через p-n-переход от величины и полярности приложенного напряжения.



13. Свойства p-n-перехода
При
больших отрицательных напряжениях в
р-n-переходе
наблюдается резкий рост обратного тока.
Это явление называют пробоем р-n-перехода.
Пробой перехода возникает при достаточно
сильном электрическом поле, когда
неосновные носителя зарядов ускоряются
настолько, что ионизируют атомы
полупроводника. При ионизации создаются
электроны и дырки, которые, разгоняясь,
снова ионизируют атомы и т. д., в результате
чего диффузионный ток через переход
резко возрастает, а на вольт-амперной
характеристике р-n-перехода
в области больших отрицательных
напряжений наблюдается скачок обратного
тока. Следует отметить, что после пробоя
переход выходит из строя только тогда,
когда происходят необратимые изменения
его структуры в случае чрезмерного
перегрева, который наблюдается при
тепловом пробое. Если же мощность,
выделяющаяся на р-n-
переходе, поддерживается на допустимом
уровне, он сохраняет работоспособность
и после пробоя. Такой пробой называют
электрическим (восстанавливаемым).


