
- •1. Определение электронных приборов. Классификация электронных приборов
- •2. Режимы и параметры электронных приборов
- •3.Электропроводность материалов.
- •4. Понятие электрохимического потенциала (уровня Ферми).
- •5.Собственная проводимость.
- •6.Примесная электропроводность полупроводниковых материалов.
- •7. Электрические переходы в полупроводниковых приборах
- •10. Электронно-дырочный переход в неравновесном состоянии
- •11.Обратное включение.
- •12. Вольт-амперная характеристика p-n-перехода
- •13. Свойства p-n-перехода
- •14 Устройство и принцип действия полупровдниковых диодов.
- •15. Классификация полупроводниковых диодов.
- •16. Система условных обозначений диодов.
- •17. Выпрямительные диоды
- •18. Стабилитроны
- •19. Варикапы
- •20. Импульсные диоды
- •21. Диоды с накоплением заряда (днз).
- •22. Диоды с барьером Шотки.
- •23 Туннельные и обращённые диоды
- •25. Определение и устройство биполярного транзистора.
- •26. Классификация биполярных транзисторов.
- •27. Система обозначений транзисторов.
- •28. Режимы работы биполярного транзистора.
- •29. Схемы включения биполярного транзистора.
- •30. Принцип работы биполярного транзи стора.
- •31.Токи в биполярном транзисторе.
- •32. Формальная модель транзистора.
- •33.Системы параметров транзистора.
- •34. Статические характеристики биполярных транзисторов схеме с об
- •35. Влияние температуры на вах транзистора
- •36. Дифференциальные параметры транзистора.
- •37. Определение h-параметров транзистора по статическим вах.
- •38. Большой Сигнал Модель Эберса-Молла
- •39.Малосигнальная модель бт
- •40. Физические параметры транзистора.
- •41. Эквивалентные схемы замещения транзистора.
- •42. Работа биполярного транзистора в режиме усиления.
- •43. Частотные свойства транзистора.
- •44. Работа транзистора в импульсном режиме
- •45. Основные параметры
- •46. Область применения
- •47 Определение и классификация полевых транзисторов.
- •48. Устройство и обозначение полевых транзисторов.
- •49. Полевой транзистор с управляющим p-n переходом.
- •50. Полевые транзисторы с изолированным затвором (мдп - транзисторы)
- •51. Статистические вольтамперные хар-и (вах) пол. Транзисторов.
- •52. Влияние температуры на вах полевых транзисторов.
- •54. Работа полевого транзистора в режиме усиления.
- •55. Частотные свойства полевых транзисторов.
- •56. Основные параметры полевых транзисторов.
- •57 Определение и классификация переключающих электронных приборов.
- •58. Устройство и обозначение тиристоров.
- •59 Диодные тиристоры.
- •60. Триодные тиристоры.
- •61. Симметричные тиристоры (симисторы).
- •62 Основные параметры транзисторов.
- •63 Однопереходные транзисторы.
- •64 Основные понятия оптоэлектроники.
- •65 Источники оптического излучения.
- •66 Светодиоды.
- •67 Приемники оптического излучения.
- •68 Фоторезисторы.
- •69 Фотодиоды.
- •70 Фототранзистор
- •71 Оптроны
- •72 Классификация приборов для отображения информации.
- •73 Электронно-лучевая трубка (элт).
- •78 Осциллографические трубки.
- •79 Индикаторные трубки.
- •80 Кинескопы.
- •81 Система обозначений элт.
- •82 Вакуумные люминесцентные индикаторы.
- •83Вакуумные накаливаемые индикаторы.
- •84 Газоразрядные индикаторные приборы.
- •85 Полупроводниковые индикаторы.
- •86 Жидкокристаллические индикаторы
- •87.Устройство и принцип действия приборов с зарядовой связью
- •88. На основе пзс, таким образом, можно строить сдвиговые регистры по-
- •89. Параметры приборов с зарядовой связью
- •91. Шумы электронных приборов и далее до 98.
68 Фоторезисторы.
Фоторезистором называют полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, в котором используется явление фотопроводимости, т.е. изменение электрической проводимости полупроводника под действием оптического излучения.
Фоторезистор обладает начальной проводимостью, которую называют темновой
q – заряд электрона; n0 , p0 – концентрация подвижных носителей заряда в полупроводнике в равновесном состоянии,µ – подвижность электронов и дырок соответственно.
Под действием света в полупроводнике генерируются избыточные подвижные носители заряда, концентрация которых увеличивается на величину ∆n и ∆p, а проводимость полупроводника
изменяется на величину называемую фотопроводимостью.
При изменении яркости освещения изменяется фотопроводимость полупроводника. Увеличение проводимости полупроводника при освещении фоторезистора приводит к возрастанию тока в цепи. Разность токов при наличии и отсутствии освещения называют световым током, или фототоком.
Характеристики и параметры фоторезистора.
ВАХ I=f(U)
Световая I=f(Ф) при U<=const
Спектральная S=f(длины волны)
Параметрами фоторезистора являются:
Темновое сопротивление – сопротивление фоторезистора при отсутствии освещения
Удельная интегральная чувствительность – отношение фототока к произведению светового потока на приложенное напряжение:
Граничная частота – это частота синусоидального сигнала, модулирующего световой поток, при котором чувствительность фоторезистора уменьшается в √2 раз по сравнению с чувствительностью при немодулированном потоке
Температурный коэффициент фототока – коэффициент, показывающий изменение фототока при изменении температуры и постоянном световом потоке.
Рабочие напряжение – номинальное напряжение между электродами фоторезистора.
69 Фотодиоды.
Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект.
Фотодиоды могут работать в одном из двух режимов:
без внешнего источника электрической энергии;
с внешним источником электрической энергии.
Схема включения фотодиода в вентильном режиме.
При
отсутствии светового потока на границе
p-n-перехода создается контактная
разность потенциалов. Через переход
навстречу друг другу протекают два
тока дрейфовый и дифузионный , которые
уравновешивают друг друга.
При освещении p-n-перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т.е. за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка.
Под действием контактной разности потенциалов неосновные носители заряда n-области (дырки) переходят в р-область, а неосновные носители заряда р-области (электроны) – в n-область. Дрейфовый ток получает дополнительное приращение, называемое фототоком. Дрейф неосновных носителей приводит к накоплению избыточных дырок в р-области, а электронов – в n-области. Это приводит к созданию на зажимах фотодиода при разомкнутой
внешней цепи разности потенциалов, называемой фотоЭДС.
Вфотодиодном, или фотопреобразовательном,
режиме работы последовательно с
фотодиодом включается внешний источник
энергии, смещающий диод в обратном
направлении. При отсутствии светового
потока под действием обратного
напряжения через фотодиод протекает
обычный начальный обратной ток, который
называют темновым.
При освещении фотодиода кванты света выбивают электроны из валентных связей полупроводника. Увеличивается поток неосновных носителей заряда через р-n-переход.
Основные характеристики Фотодиода
ВАХ I=f(U) Ф const
Спектральный S=f(длина волны)
Частотная Sит=f(f)
Параметрами фотодиодов являются:
Темновой ток
Рабочее напряжение
Интегральная чувствительность
Граничная частота