
- •1. Определение электронных приборов. Классификация электронных приборов
- •2. Режимы и параметры электронных приборов
- •3.Электропроводность материалов.
- •4. Понятие электрохимического потенциала (уровня Ферми).
- •5.Собственная проводимость.
- •6.Примесная электропроводность полупроводниковых материалов.
- •7. Электрические переходы в полупроводниковых приборах
- •10. Электронно-дырочный переход в неравновесном состоянии
- •11.Обратное включение.
- •12. Вольт-амперная характеристика p-n-перехода
- •13. Свойства p-n-перехода
- •14 Устройство и принцип действия полупровдниковых диодов.
- •15. Классификация полупроводниковых диодов.
- •16. Система условных обозначений диодов.
- •17. Выпрямительные диоды
- •18. Стабилитроны
- •19. Варикапы
- •20. Импульсные диоды
- •21. Диоды с накоплением заряда (днз).
- •22. Диоды с барьером Шотки.
- •23 Туннельные и обращённые диоды
- •25. Определение и устройство биполярного транзистора.
- •26. Классификация биполярных транзисторов.
- •27. Система обозначений транзисторов.
- •28. Режимы работы биполярного транзистора.
- •29. Схемы включения биполярного транзистора.
- •30. Принцип работы биполярного транзи стора.
- •31.Токи в биполярном транзисторе.
- •32. Формальная модель транзистора.
- •33.Системы параметров транзистора.
- •34. Статические характеристики биполярных транзисторов схеме с об
- •35. Влияние температуры на вах транзистора
- •36. Дифференциальные параметры транзистора.
- •37. Определение h-параметров транзистора по статическим вах.
- •38. Большой Сигнал Модель Эберса-Молла
- •39.Малосигнальная модель бт
- •40. Физические параметры транзистора.
- •41. Эквивалентные схемы замещения транзистора.
- •42. Работа биполярного транзистора в режиме усиления.
- •43. Частотные свойства транзистора.
- •44. Работа транзистора в импульсном режиме
- •45. Основные параметры
- •46. Область применения
- •47 Определение и классификация полевых транзисторов.
- •48. Устройство и обозначение полевых транзисторов.
- •49. Полевой транзистор с управляющим p-n переходом.
- •50. Полевые транзисторы с изолированным затвором (мдп - транзисторы)
- •51. Статистические вольтамперные хар-и (вах) пол. Транзисторов.
- •52. Влияние температуры на вах полевых транзисторов.
- •54. Работа полевого транзистора в режиме усиления.
- •55. Частотные свойства полевых транзисторов.
- •56. Основные параметры полевых транзисторов.
- •57 Определение и классификация переключающих электронных приборов.
- •58. Устройство и обозначение тиристоров.
- •59 Диодные тиристоры.
- •60. Триодные тиристоры.
- •61. Симметричные тиристоры (симисторы).
- •62 Основные параметры транзисторов.
- •63 Однопереходные транзисторы.
- •64 Основные понятия оптоэлектроники.
- •65 Источники оптического излучения.
- •66 Светодиоды.
- •67 Приемники оптического излучения.
- •68 Фоторезисторы.
- •69 Фотодиоды.
- •70 Фототранзистор
- •71 Оптроны
- •72 Классификация приборов для отображения информации.
- •73 Электронно-лучевая трубка (элт).
- •78 Осциллографические трубки.
- •79 Индикаторные трубки.
- •80 Кинескопы.
- •81 Система обозначений элт.
- •82 Вакуумные люминесцентные индикаторы.
- •83Вакуумные накаливаемые индикаторы.
- •84 Газоразрядные индикаторные приборы.
- •85 Полупроводниковые индикаторы.
- •86 Жидкокристаллические индикаторы
- •87.Устройство и принцип действия приборов с зарядовой связью
- •88. На основе пзс, таким образом, можно строить сдвиговые регистры по-
- •89. Параметры приборов с зарядовой связью
- •91. Шумы электронных приборов и далее до 98.
37. Определение h-параметров транзистора по статическим вах.
Статические характеристики позволяют определить основные параметры транзистора. Для описания свойств транзистора по переменному току чаще всего используется система h-параметров, которая представляется следующими уравнениями:
dU1 = h11dI1 + h12dU2;
dI2 = h21dI1 + h22dU2.
При нахождении h-параметров по статическим характеристикам дифференциалы заменяются конечными приращениями, тогда:
–входное
сопротивление;
–коэффициент
обратной связи по напряжению;
–коэффициент
передачи по току;
–выходная
проводимость.
Для определения h-параметров воспользуемся семействами входных и выходных характеристик для схемы с ОЭ (рис. 5,а, рис. 5,б). В заданной точке А на линейном участке семейства входных характеристик строим треугольник, проведя прямые параллельно оси абсцисс и ординат до пересечения со следующей характеристикой. Приращения токов и напряжений позволяют определить параметры h11э и h12э:
,
.
Параметры h21э, h22э определяются по выходным характеристикам. Обратите внимание на различие в обозначении статического коэффициента передачи по току в схеме с ОЭ h21Э и дифференциального параметра h21э. Через точку А', режим которой соответствует точке А, проводим вертикальную прямую до пересечения с соседней характеристикой. Задавая приращения напряжения Uкэ, находим:
,
.
38. Большой Сигнал Модель Эберса-Молла
При необходимости анализа работы транзистора в режиме большого сигнала, когда имеют значение его нелинейные свойства, находит применение эквивалентная схема, предложенная Эберсом и Моллом. Она состоит из двух диодов, включенных встречно, и двух источников тока, отображающих взаимодействие этих диодов (рис. 3.6).
Модель Эберса – Молла описывает поведение транзистора в различных режимах работы, что может быть учтено выбором соответствующей полярности напряжений на переходах транзистора.
39.Малосигнальная модель бт
Одной
из физических малосигнальных моделей
является модель, основой которой является
модель Эберса-Молла с двумя источниками
тока. На рис. 3.13 показана такая модель,
включающая в себя объемные сопротивления
полупроводников в областях эмиттера,
базы, коллектораrЭ1
, rБ1
, rК1
, а также дифференциальные сопротивления
и емкости переходов rЭ
, rК
, СЭ
, СК
.
Поскольку наибольшее объемное сопротивление полупроводника имеет база, и эмиттерный переход открыт, то можно использовать более простую Т-образную физическую модель транзистора с ОБ (рис.3.14,а). Для транзистора с ОЭ аналогичная модель представлена на рис. 3.14,б.
дифференциальное сопротивление и емкость пересчитываются по формулам:
40. Физические параметры транзистора.
К физическим параметрам помимо рассмотренных коэффициентов передачи тока относят дифференциальные сопротивления переходов, объемные сопротивления областей транзистора, емкости переходов и др.
Эти
параметры характеризуют основные
физические процессы в транзисторе. В
активном режиме ВАХ эмиттерного перехода
описывается выражении:
С ростом тока базы сопротивление r к уменьшается.
Сопротивление базы rб определяется размерами структуры и распределением концентраций примесей в активной и пассивной областях базы. Оно равно сумме распределенного сопротивления базы rб ’ и диффузионного сопротивления rб”: rб= rб’+ rб”. Распределенное сопротивление базы rб отражает сопротивление активной области базы. Как показывают расчеты, величина его может определяться соотношением
Аналогично отдельному p-n-переходу эмиттерный и коллекторный переходы транзистора характеризуются барьерными и диффузионными емкостями.
Емкость коллектора Ск гораздо меньше емкости прямосмещенного эмиттерного перехода Сэ. Однако емкость Ск шунтирует большое сопротивление коллектора r k и с ростом частоты оказывает существенное влияние на работу транзистора. В справочниках приводится емкость Ск, измеренная между коллекторным и базовым выводами на заданной частоте при отключенном эмиттере и обратном напряжении на коллекторе.