- •Методика викладання математики в початкових класах
- •1.Завдання вивчення розділу нумерації цілих невід’ємних чисел.
- •2. Різні підходи до трактування цілих невід’ємних чисел та нуля в початковому курсі математики. Натуральний ряд чисел. Особливості десяткової системи числення.
- •3. Тмо побудови дочислового періоду.
- •4.Тмо вивчення цілих невід’ємних чисел в концентрі «Десяток».
- •5.Тмо вивчення нумерації цілих невід’ємних чисел в концентрі «Сотня».
- •5.1. Тмо вивчення нумерації цілих невід’ємних чисел11-20.
- •5.2. Тмо вивчення чисел 21-100(2 клас).
- •6. Тмо вивчення нумерації цілих невід’ємних чисел в концентрі «Тисяча».
- •7. Тмо вивчення нумерації багатоцифрових чисел.
- •1.Теоретико-методичні основи початкового ознайомлення молодших школярів з діями додавання і віднімання
- •Додавання і віднімання
- •Способи читання прикладу:
- •Способи читання
- •Малюнок 1.
- •2.Теоретико-методичні основи вивчення табличних випадків додавання і віднімання у межах ста.
- •Малюнок № 2.
- •3.Тмо вивчення усних прийомів додавання і віднімання двоцифрових чисел
- •2) Випадки додавання і віднімання круглих чисел.
- •5) Випадки віднімання виду 57-34.
- •Лекція № Змістовний модуль 3.2. (зм32) Теоретико-методичні основи вивчення додавання т віднімання багатоцифрових чисел
- •1. Теоретико-методичні основи вивчення додавання і віднімання цілих невід’ємних чисел у концентрі «Тисяча»
- •8) Випадки віднімання виду 860-250.
- •10) Випадки віднімання виду 200-60.
- •13) Випадки віднімання виду 650-290 і 600-270.
- •2. Теоретико-методичні основи вивчення усних прийомів обчислень у концентрі «Багатоцифрові числа”
- •3. Теоретико-методичні основи вивчення письмових прийомів додавання і віднімання в концентрі «Багатоцифрові числа»
- •1.Теоретико-методичні основи початкового ознайомлення школярів з діями множення і ділення
- •2.Теоретико-методичні основи розгляду табличних випадків множення і ділення.
- •3.Теоретико-методичні основи вивчення особливих випадків множення і ділення з числами 0, 1, 10
- •Теоретико-методичні основи розгляду позатабличних випадків множення і ділення у концентрі «Сотня» («Тисяча»).
- •Теоретико-методичні основи вивчення ділення з остачею.
- •Теоретико-методичні основи вивчення письмових прийомів множення і ділення в концентрі «Тисяча».
- •Теоретико-методичні основи вивчення письмових прийомів множення і ділення багатоцифрових чисел.
- •1. Загальні теоретико-методичні основи формування понять про величини, що вивчаються в курсі математики і-іv класів (довжина, площа, маса, місткість, час, швидкість, ціна, вартість, тощо)
- •2.Теоретико-методичні основи ознайомлення з довжиною, способів її вимірювання, одиниць вимірювання та співвідношень між ними
- •3.Теоретико-методичні основи формування уявлень про площу, способи її вимірювання, одиниці вимірювання та співвідношення між ними
- •4.Теоретико-методичні основи вивчення маси та місткості, способів їх вимірювання, одиниць вимірювання та співвідношень між ними. Дії над іменованими числами, вираженими мірами маси
- •5. Теоретико-методичні основи формування уявлень про ціну та вартість. Вивчення взаємозв’язку між ціною, кількістю та вартістю
- •6.Теоретико-методичні основи вивчення часу. Методика ознайомлення з одиницями вимірювання часу. Дії над іменованими числами, вираженими мірами часу
- •7.Теоретико-методичні основи вивчення взаємозв'язків між пропорційними величинами
- •1. Теоретично–методичні основи вивчення алгебраїчного матеріалу в курсі математики початкових класів
- •2. Теоретично–методичні основи вивчення з молодшими школярами числових виразів і виразів, що містять змінну
- •3. Теоретико-методичні основи вивчення числових рівностей та нерівностей
- •4. Теоретико-методичні основи вивчення нерівностей, що містять змінну
- •5. Теоретико-методичні основи вивчення рівнянь
- •Найпростіші рівняння:
- •Складені рівняння:
- •6. Теоретично–методичні основи формування уявлень учнів про функціональну залежність
- •Теоретико – методичні основи вивчення геометричного матеріалу в курсі математики і-іv-х класів
- •2. Теоретико–методичні основи ознайомлення учнів з найпростішими геометричними фігурами та їх властивостями
- •3. Методика навчання учнів елементарним геометричним побудовам. Позначення фігур
- •Малюнок 3.
- •М алюнок 4.
- •4. Теоретично–методичні основи розвитку просторових уявлень та уяви учнів
- •5. Теоретико–методичні основи навчання учнів розв’язувати задачі на розпізнавання геометричних фігур, поділ їх на частини та складання фігур із заданих частин
- •6. Методика навчання учнів розв’язувати задачі на обчислення периметра та площі геометричних фігур
- •Малюнок 5.
- •7. Теоретико-методичні основи вивчення дробів: а) теоретико-методичні основи ознайомлення з частинами
- •Малюнок № 9.
- •Малюнок № 10. Б) теоретико-методичні основи вивчення дробів
- •2.Теоретико-методичні основи загальних прийомів роботи над текстовими задачами з молодшими школярами
- •2 Етап – аналіз задачі.
- •3 Етап – складання плану.
- •4 Етап – запис розв’язання задачі.
- •5 Етап – робота над розв’язаною задачею.
- •3. Теоретико-методичні основи підготовчої роботи до ознайомлення з першою простою текстовою задачею
- •4.Теоретико-методичні основи ознайомлення учнів з першою простою текстовою задачею
- •5. Теоретико-методичні основи підготовчої роботи до введення перших простих текстових задач на додавання, віднімання, множення та ділення
- •1. Теоретико-методичні основи підготовчої роботи до задач на розкриття конкретного змісту дії додавання та віднімання.
- •6.Теоретико-методичні основи навчання учнів розв'язувати прості задачі на додавання і віднімання Прості задачі, які розв’язуються дією додавання
- •Прості задачі, які розв’язуються дією віднімання
- •7. Теоретико-методичні основи навчання учнів розв'язувати прості задачі на множення та ділення Прості задачі, які розв’язуються дію множення
- •1.Система складених текстових задач курсу математики початкових класів
- •2. Типові складені задачі:
- •3. З типовим конкретним змістом та сюжетом:
- •4. Задачі з логічним навантаженням.
- •2. Теоретико-методичні основи підготовчої роботи до введення першої текстової складеної задачі
- •3. Теоретико-методичні основи введення першої текстової складеної задачі. Різні методичні підходи до розв’язання цього питання
- •1 Етап роботи над задачею - ознайомлення з умовою та усвідомлення змісту.
- •3 Етап - складання плану розв’язування задачі.
- •4 Етап – запис розв’язання задачі.
- •5 Етап – робота над розв’язаною задачею.
- •4.Теоретико-методичні основи розвитку уявлень учнів про складену текстову задачу та процес її розв’язування. Розвиток умінь учнів розв'язувати складені текстові задачі
- •Малюнок 1.
- •Малюнок 2.
- •Малюнок 3.
- •Пам’ятка «Як працювати над задачею»
- •1. Типова складена задача, на знаходження четвертого пропорційного Підготовча робота
- •2. Типова складена задача на пропорційний поділ
- •Синтетичний спосіб:
- •План розв’язання
- •Творча робота над задачею
- •3. Типова складена задача на знаходження невідомого за двома різницями Підготовча робота
- •Синтетичний спосіб:
- •План розв’язання
- •Творча робота над задачею
- •4. Типова складена задача на знаходження середнього арифметичного Підготовча робота
- •Синтетичний спосіб:
- •Розв’язання
- •5.Типова складена задача на складне правило трьох (ускладнена задача на знаходження четвертого пропорційного , на подвійне зведення до одиниці) Підготовча робота
- •Синтетичний спосіб:
- •Синтетичний спосіб:
- •6. Теоретико-методичні основи навчання учнів розв'язувати задачі з типовим конкретним змістом та сюжетом
- •1. Задачі з типовим конкретним змістом та сюжетом на рух Підготовча робота
- •1.1. На зустрічний рух
- •Синтетичний спосіб:
- •Розв’язання
- •1.2. На рух в протилежних напрямках
- •Синтетичний спосіб:
- •Розв’язання
- •1.3. На рух навздогін
- •2. Задачі з типовим конкретним змістом та сюжетом пов’язані з часом Підготовча робота
- •2.1. На знаходження тривалості події, коли відомо час початку і час закінчення події
- •2.2. На визначення початку події, коли відомо її тривалість і час закінчення
- •2.3. На визначення часу закінчення події, коли відомо тривалість і час початку
- •Синтетичний спосіб:
- •3. Задачі з типовим конкретним змістом і сюжетом із геометричним змістом
- •Аналітичний спосіб:
- •План розв’язання
- •Аналітичний спосіб:
- •План розв’язання
- •4. З типовим конкретним змістом і сюжетом пов’язанні із дробами Підготовча робота
- •Розв’язання
- •7. Теоретико-методичні основи навчання учнів розв'язувати задачі з логічним навантаженням
3. Тмо побудови дочислового періоду.
Дочисловий період - це вивчення математики з перших днів навчання в школі
Мета: виявлення тих математичних уявлень, якими володіють діти на момент приходу до школи
Вчитель повинен перевірити ЗУНи учнів, тому повинен побудувати таблицю
№ п∕п |
П. І. П. |
Властивості та відношення предметів(1тема) |
Розміщення предметів у просторі (2 тема) |
Групи предметів (3 тема) |
|
|
|
|
|
Теми, які містить дочисловий період:
Властивості та відношення предметів.
Взаємне розміщення предметів у просторі.
Групи предметів.
Із досвіду роботи вчителів використовують таку систему вправ до 1 теми «Властивості та відношення предметів»:
1.Які предмети ви бачите, знаєте у школі?
2.Яке дерево вище, нижче, однакове за висотою?
3.Яке дерево товстіше,тонше, однакове за шириною?
4.Яке дерево ближче, далі, на однаковій відстані знаходиться за вікном?
5.Яка геометрична фігура більша, менша тощо?
Система вправ і завдань, які використовують до 2 теми «Взаємне розміщення предметів у просторі» дочислового періоду:
Який предмет знаходиться ближче(далі) від нас :праворуч, ліворуч, зверху, знизу?
Покладіть трикутники на парті ліворуч, праворуч, по середині, між зошитам і пеналом тощо.
Поставте точку на верхній, нижній, лівій, правій лінії клітинки зошита.
Що ви бачите на малюнку ліворуч, праворуч, зверху, знизу тощо.
Система вправ, яку використовують до 3 теми «Групи предметів» дочислового періоду:
Полічи скільки предметів на малюнку.
Який предмет більший, менший?
Яким за порядком знаходиться предмет?
Полічи в прямому, зворотному порядку?
Яку цифру тримаю в руці?
Покажіть цифру, яка позначає скільки трикутників я показую (вчитель тримає 4 трикутника).
Покажіть за допомогою паличок, яке число позначає ця цифра (вчитель тримає цифру 4).
Порівняйте множини предметів.
Що зробити, щоб предметів було порівну?
ЗАВДАННЯ. З програми виписати державні вимоги щодо рівня загальноосвітньої підготовки учнів з даної теми.
4.Тмо вивчення цілих невід’ємних чисел в концентрі «Десяток».
Методика роботи над будь-яким питанням з необхідністю вимагає дотримання певних етапів, серед яких виділяють:
підготовчий період до сприймання нового матеріалу, на якому проводиться актуалізація опорних знань, умінь і навичок, без яких засвоєння нового матеріалу неможливе. Основною метою цього етапу є підготовка учнів до вивчення нового.
ознайомлення учнів з новим матеріалом;
формування знань, умінь і навичок.
Підготовча робота до вивчення нумерації чисел у межах десяти відбувається у дочисловому періоді. Підготовчий період до вивчення нумерації чисел в межах 10 розпочинається з першого уроку математики і закінчується на першому уроці з теми «Нумерація».
На вивчення кожного числа і цифри відводяться такі уроки (система уроків):
Утворення числа і написання цифри.
Порівняння чисел.
Склад числа.
Наприклад, вивчення числа 4 відбувається на таких трьох уроках: 1) число і цифра 4. Утворення числа. Написання цифри 4; 2) порівняння чисел у межах 4. Лічба у межах 4 і написання цифри 4; 3) склад числа 4. Лічба та написання цифр. Методика роботи на кожному уроці, присвяченому відповідному числу, аналогічна, але в міру формування у дітей відповідних знань, потрібно надавати їм більшої самостійності. На кожному з названих уроків необхідно широко використовувати предметно-практичні дії з роздавальним матеріалом і розгляд малюнків підручника чи наочних посібників. Всі предметно-практичні дії повинні виконуватися всіма учнями під керівництвом вчителя, а тому вчитель повинен спочатку демонструвати ці дії, а лише потім їх виконують учні. Разом з тим, не слід забувати, що для деяких учнів від предметно-практичних дій доведеться відмовлятися дуже швидко, бо інакше ми будемо лише гальмувати їх розвиток. Поступово від загально-класних демонстрацій, які виконує спочатку вчитель, а потім діти, треба переходити до практично-предметних дій, які виконують самі діти.
Аналіз системи вправ підручників, вивчення досвіду роботи вчителів свідчить, що основними типовими вправами, які використовуються на 1 уроці є наступні:
1) лічба предметів скінченних множин, чисельність яких характеризується числом, що розглядається;
2) утворення числа з попереднього і одиниці;
3) співвіднесення кількості предметів з числом і числа з відповідною кількістю предметів;
4) порівняння числа, що розглядається, з одиницею;
5) вибіркова лічба в межах числа, що розглядається, як кількісна, так і порядкова;
6) розгляд і написання відповідної цифри.
На 2 уроці використовують таку систему вправ:
1) порівняння чисел на основі даних впорядкованих предметних множин;
2) самостійне утворення впорядкованих предметних множин для порівняння даних чисел;
3) порівняння даних чисел на основі лічби;
4) порівняння чисел без опори на предметні множини чи натуральну послідовність.
На 3 уроці використовують таку систему вправ:
розгляд окремих випадків складу числа;
розгляд впорядкованої сукупності пар чисел на які можна розкласти дане число.
ЗАВДАННЯ. З програми виписати державні вимоги щодо рівня загальноосвітньої підготовки учнів з даної теми.
